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We present an end-to-end reconstruction of the neutrino energy, direction and flavor from shallow
in-ice radio detector data using deep neural networks (DNNs). For the first time, we were able to
determine the neutrino direction with a few degrees resolution also for the complicated event class
of electron neutrino charged-current interactions where the shower development is impacted by
the LPM effect. This result highlights the advantages of DNNs to model the complex correlations
in radio detector data. We will present an outlook of extending the model to predict the complex
probability distribution of the neutrino direction using Normalizing Flows. Furthermore, we
discuss how this work can be used for real-time alerts and an end-to-end detector optimization of,
e.g., IceCube-Gen2 radio.
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1. Introduction

The shallow detector station layout that has previously been deployed in the ARIANNA exper-
iment has shown great promise in the technology for detecting ultra-high-energy (UHE) neutrinos
[1]. Future UHE neutrino experiments, such as IceCube-Gen2 and its radio component, which
is in the technical design phase, still have the possibility of optimizing the detector station layout
before it gets deployed. This highlights the need for reconstruction methods to assess station layouts
and their performances, which is needed for a station layout optimization process. An end-to-end
detector optimization procedure could increase the reconstruction performance and will allow us
to build more capable detectors in the future. Reconstruction algorithms will also be needed when
the first event has been recorded from the upcoming detectors, but the immediate need lie in the
optimization of the detector station layout.

Previous methods have shown that reconstruction of the neutrino’s direction and energy is
possible, but only for a subset of events that do not originate from 𝜈𝑒-CC interactions [2, 3].
Furthermore, the reconstruction techniques have taken a lot of work to develop and are often hard
to generalize between different tasks. Here, we use advances in the field of machine learning
and neural networks to extract the neutrino’s energy and direction from simulated UHE neutrino
detector data. More details can be found in [4]. Here, we summarize the results of the reconstruction
capabilities of deep-learning models for the neutrino direction and energy, and give an outlook of
the prospects of also measuring the neutrino flavor. We report on future improvements of our work
to use Normalizing Flows to predict event-by-event uncertainties. In this work, we focus on shallow
detector station layouts, but the methods can also be applied more broadly for in-ice radio detection.

2. Dataset Simulation

The work in this report is based on a detector station layout that used a set of shallow in-ice
antennas located at the South Pole. The detector station consists of 4 LPDA antennas buried roughly
2 meters below the surface, along with a dipole antenna buried 15 meters below the surface. This
results in 5 measurements of the short radio pulses that emerge from a neutrino interaction in the
ice due to the Askaryan effect.

The data used in this work was simulated using the NuRadioMC [5] library, which simulates the
Askaryan radiation generated by the neutrino interaction, the propagation of the emission through
the ice, and the simulation of the detector response and trigger condition. The Askaryan signal that
is generated depends on the emission model used. Two emission models will be used in this work,
one of which uses a frequency domain parameterization [6], and the dataset that emerges from
this model will be denoted as Alvarez2009 (had.). This dataset only contains hadronic showers.
The second emission model uses a semi-analytical calculation along with a library of time-domain
charge-excess profiles of the cascades [7]. From this model, two different datasets are generated:
one dataset with only hadronic showers, denoted as ARZ2020 (had.), and one dataset with hadronic
showers and electromagnetic showers emerging from electron neutrino charged-current interactions
(𝜈𝑒-CC), denoted as ARZ2020 (had. + EM). Events with electromagnetic showers have previously
not shown great reconstruction performance with classical methods due to the large stochastic
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variability that comes from the LPM effect. The neutrinos used are generated with energies within
the interval 1017 to 1019 eV, and roughly 20 million events are generated in total.

𝐼 𝐶1 𝐶2 𝐶3 𝐶4
𝐵 𝐹 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 𝑁 𝑂

Figure 1: Structure of the neural network that was developed in this work. The labels are specified in section
3.

3. Neural Network Architecture

The network that was developed in this work is presented in Fig. 1, the full details of which
can be found in [4]. The network consists of an input layer, I, at which the antenna data is fed
to the network. The network then consists of 4 convolutional blocks 𝐶𝑖 , each of which have 3
convolutional layers followed by a pooling layer that uses Average Pooling. A batch-normalization
layer 𝐵 and a flattering layer 𝐹 are present after the convolutional blocks, which helps to stabilize the
optimisation procedure [8] and make the network dimensions match what the following layers, the
dense layers 𝐷𝑖 , are expecting. The dense layers, initially with a size of 1024 nodes, are descending
in node count of each layer by a factor of 2, until the last dense layer, which has either 3 nodes
for direction reconstruction (𝑥, 𝑦, 𝑧 coordinates), or 1 node for energy reconstruction (𝐸shower), or
2 nodes for flavor reconstruction (one-hot encoding of 𝜈𝑒-CC versus the rest). For the direction
reconstruction, the dense layers are followed by a normalization layer which ensures that the output
has a 𝐿2-norm of 1, i.e., that 𝑥2 + 𝑦2 + 𝑧2 = 1. Finally, the output layer yields the prediction of the
neural network, which is either the neutrino direction in Cartesian coordinates, the logarithm of the
shower energy, or the one-hot encoding of the flavor.

The network was built and trained using the frameworks TensorFlow and Keras [9, 10]. The
data, being too large to load into memory in full, was loaded using a custom tensorflow.data pipeline,
and the training was performed on a NVIDIA Quadro RTX 6000 GPU. A total of 300,000 events
per dataset were reserved as a test dataset, while the training and validation split for the rest of the
data for each dataset was 87 % versus 13 %. The optimization was done using the Adam optimizer
[11], using a learning rate of 5 · 10−5. The loss used is mean absolute error (MAE). The network
parameters such as layer sizes, amount of layers, the loss function, activation functions and other
hyperparameters were optimized using a trial and error approach with a grid-like search. The same
network, apart from small adjustments to fit the task (such as using a L2-normalization layer for
direction), was used for the direction, energy, and flavor reconstruction. This points to the fact of
great generalizability of deep neural networks, as 3 different tasks can find a solution in very similar
architectures.

4. Direction Reconstruction

Using the neural network model presented in section 3, the incoming neutrino direction was
predicted using the raw waveforms of the antenna signals. The results for the direction reconstruction
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Figure 2: Space angle difference for the Alvarez2009 (had.), ARZ2020 (had.), and ARZ2020 (had. + EM)
datasets. The point spread function is modeled by the Moffat/King function. The 68 % quantile is marked by
a vertical dashed line. The legend specifies the overflow, which is the fraction of events with a space angle
difference greater than 20◦.

for the three different datasets are presented in Fig. 2 and Fig. 3. The space angle difference (𝛿Ψ) is
the space angle between the true and the predicted direction for a single event. The 68 % quantile
(𝜎68) is defined as being the space angle difference at which 68 % of the test dataset has a space
angle difference at or below 𝜎68.

The results shown in Fig. 2 point to the advantages of using neural networks for reconstruction
of event properties. The ARZ2020 (had. + EM) dataset, which previously has been difficult
to reconstruct, shows only a small penalty to the performance of the direction reconstruction
when compared to the ARZ2020 (had.) dataset. In Fig. 3, the distribution of the reconstruction
performance versus neutrino energy is shown, and it is from this figure possible to see that high
energy events are reconstructed with better performance when compared to low energy events. This
can partly be explained by the fact that the training dataset contains more events at higher energies,
as those events are more likely to trigger the detector. Also, the dependence on signal-to-noise
radio (SNR) shows that events with higher SNR are reconstructed with better precision, something
which is reasonable given that the background noise will have less impact on the signal.
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Figure 3: Angular resolution 𝜎68 and its dependence on the neutrino energy and signal-to-noise ratio for the
Alvarez2009 (had.), ARZ2020 (had.), and ARZ2020 (had. + EM) datasets.
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Figure 4: Energy difference histograms for the Alvarez2009 (had.), ARZ2020 (had.), and ARZ2020 (had. +
EM) datasets.

Figure 5: 2D heatmaps of the predicted versus true neutrino shower energies for the Alvarez2009 (had.),
ARZ2020 (had.), and ARZ2020 (had. + EM) datasets. The columns are normalized to have a sum of 1. The
count of events as a function of shower energy are shown in the subplots below the heatmaps.

5. Energy Reconstruction

The energy reconstruction was done using a similar network to that of the direction recon-
struction, and the results are presented in Fig. 4 and Fig. 5. Because the shower energies range
over several orders of magnitude, the network is trained to reconstruct the logarithm of the shower
energy.

The results in Fig. 4 show that the shower energy can be reconstructed within a factor of 2 (0.3 in
𝑙𝑜𝑔10(𝐸)). This uncertainty is comparable to the irreducible uncertainty from inelastic fluctuations
[12]. Also notable is that this performance metric holds for all 3 datasets, which means that even the
complicated ARZ2020 (had. + EM) dataset can be reconstructed with similar accuracy. In Fig. 5,
the heatmaps of predicted versus true shower energy are presented, along with the count of events
versus the shower energy. These heatmaps show that for all 3 datasets, there is a bias at low energies
where the model predicts too high values for the energy, and a slight bias at high energies where the
model predicts too low values for the energy. This is partly due to the underrepresentation of these
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events in the training dataset which we plan to address in future work. See also [4] for an extended
discussion.

6. Flavor Reconstruction

The differences between 𝜈𝑒-CC interactions and all other neutrino interactions provide a
signature to obtain flavor sensitivity. 𝜈𝑒-CC interactions produce both a hadronic shower (from
the breakup of the nucleon) and an electromagnetic shower (from the created electron/positron).
Furthermore, the electromagnetic shower is affected by the LPM effect, which delays the shower
development leading to interference of both showers, which alters the radio pulses. All other neutrino
interactions only initiate a hadronic shower. In Fig. 6, the results from the flavor reconstruction
are shown. The figures show confusion matrices in 4 different neutrino energy intervals, with the
true flavor label on the vertical axis and the predicted flavor label on the horizontal axis. The
performance on reconstructing the neutrino flavor increases greatly with increasing energy. This
can be explained by the fact that the LPM effect affects high-energy events to a greater extent than
low-energy events, which allows for greater differentiation between 𝜈𝑒-CC events and non-𝜈𝑒-CC
events.

Figure 6: Confusion matrices for the predicted versus true flavor label for 4 different neutrino energy
intervals. The vertical axis specifies the true flavor, and the horizontal axis specifies the predicted flavor.

7. Outlook

One important aspect of a successful reconstruction is uncertainty estimation. This is often as
important as the nominal value itself, for example, in real-time alerts where it is not only important
to know the best fitting neutrino arrival direction but also the sky region from which the neutrino
could have originated. A simple approach is to let the network predict also the sigma parameter
of a Gaussian distribution. However, often the uncertainties are non-Gaussian and show strong
correlations, which is the case for direction reconstruction. One potential solution to this is using
normalizing flows [13] to predict event-by-event uncertainties. An example of this is seen in Fig. 7,
where the normalizing flows network predicts the probability distribution function of the energy,
yielding an estimate of the uncertainty of a particular event [14].

As mentioned previously, there is still time to improve and optimize the station layout for the
radio component of IceCube-Gen2. End-to-end detector optimization is currently impossible due
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Figure 7: An example PDF of the energy distribution generated using normalizing flows. The x-axis is the
energy. From the PDF, an uncertainty estimation can be extracted as the width of the distributing. The true
energy of the event is marked with the vertical line.

Figure 8: An example of the emitted Askaryan signals generated by a differential surrogate model consisting
of a Generative Adversarial Network (GAN). The true signals are marked with the colorized dashed and solid
lines, with 10 realizations of the generated signals shown in gray.

to the very time-consuming Monte Carlo (MC) simulation of data. Using the advances in neural
networks, this might be overcome by replacing the complete pipeline with fast and differential
surrogate models. We achieved promising results for two of the most time-critical parts, namely,
the generation of the Askaryan signal as well as the ray tracing. As a function of energy and viewing
angle from the Cerenkov cone, a Generative Adversarial Network (GAN) generates the Askaryan
signal a lot quicker than it currently takes. An example is shown in Fig. 8, where 10 realizations of
the Askaryan signal are shown for two different viewing angles, along with the true signal. Also,
see [15] for more on this matter.
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