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Detecting Fermi LAT Gamma-ray Sources with Neural Networks Diana Horangic

The Fermi Large Area Telescope (LAT) has been in orbit of Earth since 2008 collecting gamma
rays. One challenge in analyzing LAT data is detecting sources and knowing the various classes of
gamma-ray sources and how many there are. Neural networks show impressive accuracy in many
fields. Application of these networks to Fermi LAT data can potentially be more successful than
traditional statistical methods of source detection. Here we present our attempt at a flexible neural
architecture Python package, fermidetect, designed specifically to train and predict on simulated
and real Fermi LAT data. This package is based heavily on Meta AI’s Detectron2 [1] deep learning
framework and will be used to test the performance of different algorithms and hyperparameters on
simulated LAT data.

1. Introduction

Machine Learning (ML) is the study of algorithms that improve gradually at some task by
learning from available data. Among various applications of ML, focusing on vision, two essential
tasks are object detection and segmentation. Object detection is about locating objects with
bounding boxes but segmentation is about performing classification at the pixel level of an image or
video frame. Within segmentation, semantic segmentation performs pixel-level labeling for a set of
object categories (tree, bird etc.), while instance segmentation extends this further by detecting and
delineating each object of interest in the image. Neural networks are a subset of machine learning
that involve layers of nodes that depend on representations, or transformations, of input [2]. In the
input case of an image, a representation could be features like a dog’s ear shape or a balloon’s color.
The most simple networks have one loss function which gives information on whether a model
describes data well, this loss function must be minimized. However, more complex models might
use a combination of loss functions. For example, a Mask R-CNN (region-based convolutional
neural network) uses a multi-task loss function that combines the loss of classification (what class
of object is this?), localization (where is this object?), and segmentation (what are the boundaries of
this object?) [3]. The classification loss L ;4 is a log loss function over two classes (background
or object of interest). The localization loss L;,c4; 1S @ smooth L1 loss, which is a Huber loss with
an additional adjustable parameter 3,

2
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For a single example then, x = y — y where J is the predicted label and y is the ground truth
label. The segmentation loss L., is the average binary cross-entropy. The multi-task loss to be
minimized is therefore

L= Lclass + Llocal + Lseg-

As the loss function of a model is minimized, a set of weights is developed that can be used to
predict the existence, location, and class of an object in an image or other media. In the case of
Mask R-CNN, the multi-task loss is minimized via the Adam optimizer algorithm, an extension of
stochastic gradient descent that is more well-suited for noise-related issues than gradient descent.

The size of a network and the scale of the training data determine success at a task. When
it comes to large training sets, neural networks tend to dominate in performance over lower level
supervised learning algorithms like support vector machines.
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Fermi-LAT measures gamma-ray photons at energies ranging from MeV to TeV. In 12 years,
LAT can measure a billion gamma-ray photons. Traditionally, sources are detected in LAT data
through a maximum likelihood analysis where L g, is the likelihood of a model without the candidate
source and L, is the likelihood of a model with the candidate source. A test statistic is given by

L,

TS:—2><log£ .
Hy

If the test statistic 7'S is larger than a threshold of detection, the null hypothesis is rejected and the
candidate source is confirmed [4].

Source detection in LAT data is still an active area of research. Traditional methods require
an approximation of background radiation and therefore introduce a degree of uncertainty. LAT
data is largely unstructured and there is no clear detection of faint sources. Neural networks
show impressive accuracy at interpreting unstructured data and a previous attempt has been made to
localize and classify simulated gamma-ray sources based on LAT catalog [5]. However, architecture
design space for this task is at the moment vast and more models (and their hyper-parameters) like
RetinaNet or Mask R-CNN should be tested. In addition to this, pipelines for prediction on real
data using trained models still need to be built.

2. Simulated Data

The response of a telescope to a point source of radiation can be roughly approximated by a
2-dimensional Gaussian

f(x,y) =exp (—((x_x0)2 + (y_yO)z)),

202 20'3

where (xg, yo) is the center of the Gaussian. The Gaussian width o is in the x direction and
the Gaussian width o is in the y direction. LAT data can be simulated through this basic level
modeling [6] or through the fermitools Python package.

The preliminary dataset used to train fermidetect architectures was 767 test patches of sky,
which were simulated across 5 energy bins. Bins were defined based on the sensitivity of LAT and
are 0.3-0.5 GeV, 0.5-1 GeV, 1-2 GeV, 2-7 GeV, and 7-20 GeV. Sources were simulated based on the
properties of various sources in LAT-DR?2 catalog using fermitools. Galactic diffuse and isotropic
emission, which typically make sources harder to pick up on with the traditional methods, were
also taken into account. Sources were annotated with bounding boxes. Because different energy
bins have different resolutions, and thus different dimensions by nature, all bins were upsampled or
downsampled to an n X n patch size in preparation for stacking depth-wise. For a single training
example across 5 energy bins, see Figure 1. Energy bins were then stacked depth-wise, preserving
the counts of each bin, and final training data had the dimensions n X n X 5.

Bounding box annotations can be converted from .csv format to COCO format through the
conversion module and saved in a .json file. Datasets generated with different interpolation methods
or different end patch size n are stored and can be automatically trained on later.
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Figure 1: Simulated data across 5 different energy bins shown here in in increasing GeV order. Each patch
and its counts have been bilinearly interpolated to a standard size of 128 x 128.

3. Fermidetect

In the case of LAT data, a neural architecture takes as input a patch of simulated sky with
separate counts of 5 or more energy bins. The config module of fermidetect allows many different
Generalized R-CNN configurations to be generated and then saved as .yaml files. Users can
then load these configurations automatically, merge them with the default Generalized R-CNN
configuration, and compare training results to determine optimal pre-processing methods, hyper-
parameters, network backbones, region proposal methods, training methods and more.

3.1 Pre-processing
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(a) Upsampled with a bicubic interpo- (b) Upsampled with a bilinear interpo- (c) Upsampled with a nearest-neighbor
lation. lation. interpolation.

Figure 2: Patch of sky with simulated counts of a 0.3-0.5 GeV energy bin, upsampled with different
interpolation methods from 3232 to 128 x 128. Each image has been standardized through the configuration
module in preparation for stacking.
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The structure of fermidetect necessitates stacking of different energy bins before training. The
available upsampling methods are the bilinear, bicubic, and nearest neighbor algorithms. For a
comparison of the different methods on patches before stacking, see Figure 2.

Pre-processing can be tightly controlled using the configuration module of fermidetect. Counts
in each energy bin were checked before interpolation and then scaled to their pre-interpolated value
through a calculated ratio, preserving their original value. Two options for feature scaling of
patches before propagation also exist: normalization via min-max scaling and standardization. For
a comparison of these two pre-processes, see Figure 3.

o 0
20 20
40 40
&0 G0
80 a0 f
100 100
120 : 120 _
0 20 40 &0 80 1IIJ{I ‘ 120 0 20 40 &0 80 100 120
(a) Feature scaled via normalization. (b) Feature scaled via standardization.

Figure 3: Different feature scaling methods applied to another patch of sky with simulated counts of a
0.3-0.5 GeV energy bin.

3.2 Network Architectures

A generalized R-CNN template is provided with the package. Users can vary attributes of
this architecture through the config module. The current available region proposal methods for an
R-CNN double stage model are the selective search algorithm and a feature pyramid network (FPN).
Users can select a ResNet of 50 or 101 layers for this FPN. RetinaNet is the only single stage model
included. The following main hyper-parameters can also be adjusted:

1. The base learning rate is the learning rate that gradient descent or another optimization
algorithm will start with. The base learning rate will decrease or increase according to other
hyper-parameters and is usually neither independent nor constant. A learning rate too small
may miss the loss minimum and land erroneously on local minima. It can also over-fit the
data. A too-large learning rate will cause the model to converge too quickly and may lead to

under-fitting.

2. One iteration is one batch being propagated through the network. Maximum iteration is the
total number of times this occurs.
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3. The momentum is the moving average of past gradients and is used to accelerate the gradient
in the correct direction.

4. The gamma parameter is also called the discount factor. It is between O and 1 and is a
quantification of algorithm rewards. A lower value of gamma will push the model to reward
itself immediately for smaller tasks, a higher value of gamma will push the model to wait to
solve more difficult tasks before rewarding itself.

4. Conclusion

So far, fermidetect loads a generalized R-CNN architecture from a YAML file, converts
annotated and simulated LAT data to a COCO format, pre-processes these patches, and trains a
network from scratch. Fermidetect is based on a package that supports segmentation learning and
we also plan to add this feature in the future. Pre-training options will improve performance of
networks and data used for this need not be as carefully simulated as our training data. A predictor
module will also be built to apply trained networks to real patches of LAT data. The true test of
fermidetect’s usefulness will be its performance at source detection on real LAT data and how this
compares to a traditional method of maximum likelihood analysis.
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