PoS - Proceedings of Science
Volume 422 - The Tenth Annual Conference on Large Hadron Collider Physics (LHCP2022) - Poster Session
Searching for an eco-friendly gas mixture for the ALICE Resistive Plate Chambers
 on behalf of the ALICE collaboration  on behalf of the ECOgas@GIF++ collaboration, M. Abbrescia, G. Aielli, R. Aly, M.C. Arena, M. Barroso, L. Benussi, S. Bianco, D. Boscherini, A. Bruni, P. Camarri, L. Congedo, M. Corbetta, M. De Serio, A. Di Ciaccco, L. Di Stante, P. Dupieux, J. Eysermans, A. Ferretti, M. Gagliardi, G. Galati, R. Guida, B. Joly, B. Liberti, B. Mandelli, S.P. Manen, L. Massa, L. Passamonti, A. Pastore, E. Pastori, D. Piccolo, D. Pierluigi, L. Pizzimento, A. Polini, G. Proto, G. Pugliese, L. Quaglia*, D. Ramos, G. Rigoletti, A. Rocchi, M. Romano, A. Russo, P. Salvini, A. Samalan, R. Santonico, G. Saviano, S. Simone, L. Terlizzi, M. Tytgat, E. Vercellin, M. Verzeroli and N. Zaganidiset al. (click to show)
Full text: pdf
Pre-published on: March 27, 2023
Published on: June 21, 2023
Abstract
Resistive Plate Chambers (RPCs) are gaseous detectors with parallel plate geometry and resistive electrodes, widely employed at the LHC. In ALICE (A Large Hadron Collider Experiment) 72 RPCs are installed in the forward muon spectrometer and provide muon identification.

he ALICE RPCs are operated with a mixture of 89.7% $C_{2}H_{2}F_{4}$, 10% i-$C_{4}H_{10}$ and 0.3% $SF_{6}$. $C_{2}H_{2}F_{4}$ and $SF_{6}$ are fluorinated greenhouse gases (F-gases) with a high Global Warming Potential (GWP). New European Union regulations have imposed a progressive phase-down of the production and usage of F-gases, aiming to cut down their emission by two thirds in 2030 with respect to 2014.

Even though research activities are excluded from these regulations, the F-gases phase-down will inevitably increase their price and CERN is also aiming to cut down on its emissions. For these reasons it is crucial to find a more eco-friendly gas mixture for RPCs by the time of the LHC long shutdown 3, foreseen in 2026. Since $C_{2}H_{2}F_{4}$ is the main contributor to the mixture’s GWP an extensive R&D process has started to replace it with tetrafluoropropene ($C_{3}H_{2}F_{4}$), due to its chemical similarity with $C_{2}H_{2}F_{4}$ and its low GWP (around 7). Preliminary tests with cosmic rays have shown promising results in terms of detector performance. The next step is to study the long-term behavior of RPCs operated with these new gas mixtures (aging studies). Since this is a subject of interest for all (and not only) the LHC experiments, a collaboration, ECOgas@GIF++, was setup to carry out joint studies.

Among others, small-size, ALICE-like RPCs were installed at the Gamma Irradiation Facility at CERN, where they are exposed to a strong radiation field, coming from a 12.5 TBq $^{137}$Cs source, which allows one to simulate many years of operation in a relatively short time. The facility also provides a muon beam at specific times of the year, which can be used to study the detector performance (e.g. efficiency and cluster size) during and after irradiation.

This poster reports the current status of the measurements, focusing on the preliminary results of the irradiation campaign and of beam tests carried out in 2021.
DOI: https://doi.org/10.22323/1.422.0260
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.