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I discuss the testability prospects of the minimal GeV-scale type-I seesaw model and the associated
leptogenesis mechanism within future experiments as SHiP and FCC-ee. In particular, I show
how to derive accurate analytical approximations to the solution of the kinetic equations, which
expose the non-trivial parameter dependencies in the form of first principles CP invariants. On
the one hand, this allows to derive robust mass-dependent upper and lower bounds on the HNL
mixing. On the other hand, it also reveals the correlation of baryogenesis with other observables,
as e.g. the flavour structure or neutrinoless double-beta decay.
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Bounds on right handed neutrinos from observable leptogenesis

1. Introduction

Leptogenesis addresses the problem of the observed baryon asymmetry of our Universe (BAU)
within a framework which can simultaneously provide masses to the active neutrinos. The minimal
type-I seesaw model in accordance with neutrino oscillations data extends the Standard Model (SM)
with two Majorana singlet fermions (HNLs) that couple to the SM via the fermion portal, is also
able to explain the BAU for heavy state masses ranging from sub-GeV to∼ 1015 GeV. An interesting
scenario is that the Majorana masses are in the range of (0.1−100) GeV, such that the HNLs can be
produced at colliders. In this case, the relevant process to generate the BAU is via HNL oscillations
during its freeze-in [1, 2]. Although this model has been extensively studied in the past (see [3]
for a review), an accurate analytical understanding of the parameter space that leads to successful
baryogenesis was first derived in [4]. In particular, the use of parametrization-independent CP
flavour invariants allows to express the analytical solutions in terms of other flavour observables.
This allows to either analytically predict the constraints on the BAU arising from putative future
measurements of HNLs, CP violation in neutrino oscillations and neutrinoless double-beta decay
or, alternatively, to set bounds on HNL parameters from the BAU. In the following I review the
method we derived in [4] to analytically solve the complete linearized set of quantum Boltzmann
equations. The solutions take into account mass effects in the interaction rates and cover all washout
regimes. In section 3 I show some of the resulting constraints from the BAU.

2. The model and analytical approximation

The model considered is the type-I seesaw, which adds to the SM 𝑛 fermion singlets 𝑁 𝑖 . The
Lagrangian therefore reads

L = L𝑆𝑀 −
∑︁
𝛼,𝑖

�̄�𝛼𝑌 𝛼𝑖Φ̃𝑁 𝑖 −
𝑛∑︁

𝑖, 𝑗=1

1
2
�̄� 𝑖𝑐𝑀𝑅𝑖 𝑗𝑁

𝑗 + ℎ.𝑐. ,

where 𝑌 is a 3 × 𝑛 complex Yukawa matrix and 𝑀𝑅 is a 𝑛 × 𝑛 complex symmetric matrix. 𝐿 is the
fermion doublet and Φ̃ = 𝑖𝜎2Φ

∗ is the Higgs doublet. We consider the minimal model with 𝑛 = 2.
An approximate lepton number (LN) symmetry [5, 6] leads to testable mixings between the HNLs
and the SM sector which exceed the naive seesaw scaling. Assigning the LN 𝐿 (𝑁1) = −𝐿 (𝑁2) = 1,
the textures of 𝑌 and 𝑀𝑅 are given by

𝑌 =
©«
𝑦𝑒𝑒

𝑖𝛽𝑒 𝑦′𝑒𝑒
𝑖𝛽′

𝑒
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𝑖𝛽𝜇 𝑦′𝜇𝑒
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𝜏

ª®®¬ , 𝑀𝑅 =

(
𝜇1 Λ

Λ 𝜇2

)
. (1)

Here, with 𝑦2 ≡ ∑
𝛼 𝑦2

𝛼 we have 𝑦′𝛼/𝑦 ≪ 1 and 𝜇𝑖/Λ ≪ 1, because 𝑦′𝛼 and 𝜇𝑖 break the
LN symmetry. In particular, this guarantees the light neutrino masses to be under perturbative
control 𝑚𝜈 = 𝑓 (𝑦′/𝑦, 𝜇𝑖/Λ), while leading to unsuppressed HNL mixings𝑈2 ≃ (𝑦𝑣/𝑀)2, with 𝑣 =

246 GeV the Higgs vev and 𝑀 being the average of the physical HNL massesΛ = (𝑀1+𝑀2)/2 ≡ 𝑀 .
We will use eq. (1) to analytically solve for the baryon asymmetry 𝑌𝐵 by perturbing around the
symmetric limit. To do so, we make the following approximations. We first linearize the system,
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assume the interaction rates to evolve only linearly with the temperature at leading order and that the
lepton chemical potentials do not receive flavour cross contributions from the 𝐵/3 − 𝐿𝛼 chemical
potentials. To find a closed form solution, we further need to employ an adiabatic approximation
for cases in which there is a large hierarchy between the vacuum oscillation rate and thermalization
rate of the right handed neutrinos, i.e. 𝜖 = Γosc/Γ ≪ 1 or 𝜖−1 ≪ 1. If however 𝜖 ≪ 1 only until
some temperature 𝑇0 > 𝑇EW but then 𝜖−1 ≪ 1 from 𝑇0 down to 𝑇EW, a solution can be found via
the projection of the solution found at 𝑇0 onto the subsystem of the weak washout modes. This
method allows to cover the intermediate regime which has not been considered in the literature
before. Comparing the analytical result to the full numerical solution we find an agreement within
at most a factor of two. Further imposing that the model resembles neutrino oscillations data, the
parameter space gets tightly constrained and correlated. It is described by only 6 free parameters
which are one Yukawa scale, two HNL masses and 3 phases encoding CP violation, i.e. the Dirac
and Majorana PMNS phases and a high scale phase, see [4] for the parametrization. Our analytical
approximations for the baryon asymmetry depends on CP flavour invariants, which can be used to
derive robust connections between the generation of the baryon asymmetry and other observables,
which I will discuss in the next section, but more details can be found in [4].

3. Constraints from the baryon asymmetry

By employing the perturbative methods discussed in the previous section, we can derive the
constraints imposed by successful baryogenesis on the masses and mixings of the HNLs as well as
the CP violating phases. Here I consider two particular examples, but see [4] for further details. On
the one hand, I show how to derive an absolute upper bound on the mixing of the HNLs with the
active neutrinos for which leptogenesis is possible. On the other hand, I show correlations in the
flavour ratios |𝑈2

𝛼 |/𝑈2 and implications on the amplitude of neutrinoless double-beta decay driven
by 𝑚𝛽𝛽.

Analytical upper bound. The largest mixings of the HNLs compatible with the BAU can
be achieved if one weak mode ensures the out-of-equilibrium condition at the electroweak phase
transition. The following physical scenario guarantees exactly this. As long as the LN symmetry
of eq. (1) is approximately exact, the two HNLs are nearly degenerate, i.e. Δ𝑀 = 2𝜇2 ≪ 1.
Furthermore, in the same basis it is evident that 𝑁2 interacts with the thermal plasma only via the
perturbatively small coupling 𝑦′ ≪ 𝑦. Imposing the constraints arising from neutrino oscillations
it can be shown that in fact 𝑦′ ∝ 𝑦−1 [4]. This means that the larger the HNL mixing the farther 𝑁2

is kept out of thermal equilibrium. Such a scenario is known as the overdamped regime, in which
the vacuum oscillation length of 𝑁1 → 𝑁2, dictated by Δ𝑀 , is larger than its plasma free streaming
length. On the other hand, the analytical solution of the quantum kinetic equations reveals that the
baryon asymmetry behaves as 𝑌𝐵 ∼ C1𝑦

′/𝑦3 + C2𝑦
′/𝑦 if helicity conserving interactions are weak

or as 𝑌𝐵 ∼ C3𝑦
′/𝑦 if they are strong. This means that there is a non-trivial interplay between the

generation of the light neutrino masses and the baryon asymmetry, which leads to an upper bound
on the HNL mixing. Figure 1 shows the upper bound analytically derived in ref. [4] for both, normal
and inverted, hierarchies. It is compared to the full numerical solution of a parameter space scan
within the sensitivity reach of the future colliders SHiP and FCC. We can appreciate an excellent
agreement.
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Figure 1: Numerical result of the Bayesian analysis (blue (red) points for NH (IH)) together with the analytical
derived upper bound on the HNL mixing (black line). The grey shaded regions is excluded by direct searches
or neutrino masses (seesaw limit), while the yellow one is excluded by big bang nucleosynthesis constraints.
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Figure 2: Solutions of a numerical scan with fixed Δ𝑀/𝑀 = 10−2 for which the BAU can be explained. NH
(IH) is shown in blue (red). Left: Flavour ratio of points testable at FCC. The dashed lines correspond to the
region compatible with neutrino oscillation data. Right: 1 and 2𝜎 region of points testable at SHiP on the
plane (𝛿, 𝑚𝛽𝛽). The standard light neutrino contribution is contained within the dashed bands.

Correlations of the BAU to other observables. For concreteness we will focus on the scenario
in which 𝜖−1 ≪ 1 at the time of the first oscillation 𝑇osc. This is known as the fast oscillations
regime. It requieres flavour hierarchical interactions, Γ𝛼 (𝑇EW) < 𝐻 (𝑇EW) for some flavour 𝛼, to
achieve HNL mixings inside the sensitivity reach of SHiP and FCC. Such hierarchies are controlled
by 𝜖𝛼 = 𝑦2

𝛼/𝑦2, which is naturally expected to be O(1). The farther suppressed 𝜖𝛼 is compared to
O(1) the more pronounced is the flavour selection in |𝑈𝛼 |2/𝑈2. This can be seen in the left panel
of fig. 2 for an exemplary and potentially measurable relative mass splitting of Δ𝑀/𝑀 = 10−2.
The right panel of figure 2 shows both the active neutrino and HNL contribution to 𝑚𝛽𝛽 for HNLs
with mixings to the active neutrinos which are testable at SHiP. Remarkably, the presently preferred
range of 𝛿 ≥ 𝜋 [7, 8] corresponds to the region where HNLs effects lead to an enhancement of 𝑚𝛽𝛽 .
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