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Collective Neutrino Oscillations: Beginning and End

1. Introduction

Neutrinos produced by supernovae and neutron star mergers can significantly impact the
dynamics and nucleosynthesis of the stars they are produced in because they carry away a large
amount of energy and interact differently with the background medium depending on their flavor
states. Understanding the flavor evolution of these neutrinos in these environments is therefore
important.

The flavor evolution of dense neutrino clouds can be complex due to a range of factors, including
the initial trapping of neutrinos in the core, their subsequent leakage through diffusion, and the
influence of background matter on flavor-mixing. While flavor-mixing is typically suppressed in
environments with high background matter density, large collective flavor conversion can still occur
due to an instability that arises when neutrinos forward-scatter off each other and influence each
other’s flavor evolution. This leads to an intricate, collective flavor evolution that can produce
exponential growth in flavor conversion through nonlinear routes [1–5].

In the last three decades, a lot of insight has been obtained into the origin and impact of a
variety of collective flavor transformations. However, it is only very recently that we have begun to
consolidate our understanding of these perplexing dynamics under a single rubric. In this talk, I try
to concisely answer two key questions:

• When and why does neutrino-flavor change exponentially with time?

• What is the eventual result of such unstable flavor change?

This talk is based on the papers [6] and [7–10], from which much of the material below is
reproduced. Interested readers will also find more references to related literature cited therein. We
use natural units throughout, with ~ = c = 1.

2. The Set-up

We consider scenarios where the flavor-dependent occupation matrix for a neutrino evolves as

vα∂αρp = −i [Hp, ρp] + Cp , (1)

where a summation over the spacetime indices α = 0, . . . , 3 is implied. ρp and ρ̄p are the 3 × 3
occupation number matrices for neutrinos and antineutrinos, and Hp and Cp are the Hamiltonian
and collision matrices, respectively. The problem is nonlinear despite appearances because Hp
contains terms involving ρp and ρ̄p, as does Cp. The equation of motion (EoM) for the antineutrino
matrices ρ̄p is the same except for a sign-change in the mass-mixing term in Hp.

All flavor coherence effects depend only on the difference of the original neutrino phase space
distributions. In particular, we may write the effective two-flavor neutrino matrices of occupation
numbers in the form

%
eµ
p =

fνe,p + fνµ,p
2

I +
fνe,p − fνµ,p

2
*
,

sp Sp
S∗p −sp

+
-
, (2)

whose off-diagonal equals ρeµp , i.e., the off-diagonal of the three-flavor matrix, where sp is a real
number, and Sp complex with s2

p + |Sp |
2 = 1.
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Collective Neutrino Oscillations: Beginning and End

To study the initial growth of flavor-change, as in Sec. 3, we can linearize the EoM. To linear
order in |Sp |, one has sp = 1, so we can focus on the space-time evolution of Sp alone which holds
all the information concerning flavor coherence. The two-flavor spectrum is

gΓ =
√

2GF




fνe,p − fνµ,p for E > 0,
fν̄µ,p − fν̄e,p for E < 0,

(3)

with Γ = {E, v}. The linearized EoM thus reads [11–13](
vα (i ∂α − Λα) − ωE + i |∆Γ |

)
SΓ = −vα

∫
dΓ′ v′α gΓ′ SΓ′ , (4)

where the phase-space integration is over∫
dΓ =

∫ +∞

−∞

E2dE
2π2

∫
dv
4π

, (5)

with
∫

dv an integral over the unit sphere, i.e., over the polar and azimuthal angles of p. The
ωE encodes mass-square difference (note that the mixing has been set negligible to mimic dense
matter), Λα contains refractive effects due to forward scattering, whereas |∆Γ |encodes the effect of
collisions [6].

On the other hand, for Sec. 4 relevant outside of the linear regime, one must solve the full
nonlinear equation. Here, we specialize to fast oscillations without collisions. Axisymmetry
restricts that the flavor evolution depends on a single spatial coordinate z, a single momentum
coordinate v, and of course on time. This is a simple model for fast neutrino flavor evolution in a
supernova, after it starts free streaming. Under these assumptions, the flavor content encoded in
each ρv evolves as

(
∂t + v∂z

)
Sv = µ0

∫ +1

−1
dv′Gv′

(
1 − vv′

)
Sv′ × Sv . (6)

Here Sv is the Bloch vector encoding the flavor state for neutrino modes with velocity v, with
|v | < 1. The ELN distribution function Gv is the excess of the phase space distribution of νe over νµ
(and ν̄µ over ν̄e), integrated over E2dE and divided by a typical density, say nν. This is proportional
to the spectrum gΓ integrated over E2dE. Only the product of µ0 and Gv appears; though, one
defines a rate µ0 ∝ GFnν as the collective potential. Hereafter, we set µ0 = 1, and express z and t
in units of µ−1

0 . The ELN becomes dimensionless in these units.

3. Condition for Collective Instability

As usual, for a linear EoM we search for space-time dependent solutions of equation (4) in
terms of its independent Fourier components

SΓ,r =
∑
K

QΓ,K e−i(K0t−K·r) , (7)
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where rµ = (t, r) and Kµ = (K0,K). The quantity QΓ,K is the eigenvector in Γ-space for the
eigenvalue K . After some manipulations, the linearized EoM can be shown to imply

vαΠ
αβ
k

Ak,β = 0 , where, (8)

Π
αβ
k
= hαβ +

∫
dΓ gΓ

vαvβ

vγkγ − ωE + i |∆Γ |
, (9)

with hαβ = diag(+,−,−,−) being the metric tensor. This equation must hold for any vα and thus
consists of four independent equations Παβ

k
Ak,β = 0. Nontrivial solutions require

D (k) ≡ detΠαβ
k
= 0 , (10)

establishing a connection between the components of k = (k0, k), i.e., the dispersion relation of
the system. It depends only on the neutrino flavor spectrum gΓ, which itself contains the neutrino
density, the vacuum oscillation frequency ωE , and the damping rate |∆Γ |.

If the imaginary part of k0 is positive, for any k that satisfies equation (10), equation (7) tells
us that it leads to exponential growth of the off-diagonal flavor coherence between the two flavors
under consideration, i.e., Seµ ∼ et Im k0 . In the limit of vanishing flavor-mixing, as relevant in dense
matter, such flavor conversion is surprising and called a collective instability.

Now we prove that collective instabilities can arise only if there is a crossing of phase space
distributions [6]. We prove the proposition by contradiction, following Morinaga [14]. We separate
the real and imaginary parts of k0 = κ + iσ, where κ, σ ∈ R, and write the Π matrix as

Π
αβ = Mαβ − iNαβ , (11)

where M and N are real-symmetric matrices

Mαβ = hαβ +
∫

dΓ gΓ
(κ − v · k − ωE ) vαvβ

(κ − v · k − ωE )2 + (σ + |∆Γ |)2 ,

Nαβ =

∫
dΓ gΓ

(σ + |∆Γ |) vαvβ

(κ − v · k − ωE )2 + (σ + |∆Γ |)2 . (12)

One can make an orthogonal transformation to diagonalize N to the diagonal matrix D, and then
simple manipulations show that ∑

α

Dαα |Aα |2 = 0 . (13)

In the equation above, |Aα |2 are non-negative and not all of them vanish. As proposed, we have
σ > 0 and gΓ has the same sign everywhere, so all Dαα have the same signature as gΓ.

There would appear to be two possibilities for equation (13). First, the singular case where
Dαα = 0 for all α for which |Aα |2 , 0. However, in that case for some α, the integral of

(
Oα
µ v

µ)2

times an everywhere-same-sign function vanishes identically. This is possible only if
(
Oα
µ v

µ)2
= 0

for all points in Γ or if gΓ = 0. That is, the same O makes the α-component of any v vanish
or that there are no collective effects at all, respectively. These are either impossible or trivial,
and therefore excluded. Second is the non-singular case, where Dαα , 0 for some Aα , 0. In
this case, in equation (13) at least one term is nonzero and all terms are non-negative. But then
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equation (13), which algebraically followed from our original assumptions, cannot be satisfied! The
only resolution is that gΓ must change sign if there exists a σ > 0. This completes the proof of the
proposition. As a corollary, setting ωE → 0 and ∆Γ → 0, one recovers the necessary condition for
collisionless fast instability. Other sub-classes of instabilities may be similarly obtained by taking
appropriate limits, e.g., setting ∆Γ , 0 for collisional instabilities [15].

4. Ultimate Fate of Collective Oscillations

Collective neutrino instabilities are typically much faster than ordinary neutrino oscillations,
and occur deeper inside the star. They also have nontrivial dependence on spatial and time, because
of their nontrivial dispersion relations. In detail, the full nonlinear evolution of these dense neutrino
gases is very complex indeed. However, for the purposes of phenomenology we find that it may
be useful to focus on the long-term final state of these oscillations. We find that if fast conversions
occur, they typically lead to partial flavor equilibrium [7].

We performed some of the first nonlinear calculations of the fast collective oscillations de-
pending on both space and time [8–10], as per Eq. (6). The initial evolution of the average flavor
content is looks similar to the oscillatory motion of an inverted pendulum. However, this is better
understood using the mapping to particle rolling in a quartic potential for a simple model [16]. As
we show in refs. [8–10], including the advective terms in the EoM, this pendulum neither preserves
its length nor retains its periodic motion. It settles down to a resting point, which is analytically
known in terms of the ELN and its moments. The shrinking of the length of the pendulum and
its settling down can be traced to a number of relaxation mechanisms. These fundamentally stem
from the quenching of the transverse components of the flavor polarization vectors due to relative
dephasing. Such dephasing begins already in the linear regime of flavor growth. However, the de-
polarization depends strongly on which velocity modes experience a large transverse Hamiltonian.
In the nonlinear regime, n-multipole cascade and k-mode mixing lead to spreading of the flavor
disturbance in momentum space and position space, respectively.

The flavor content eventually acquires an approximately time-independent character. This is
called depolarization. The extent of depolarization is non-uniform over neutrino and antineutrino
momentum. In general, it depends on the ELN. This is essentially because the net lepton asymmetry
needs to remain conserved. The broad results on depolarization and its extent, as well as mixing of
velocity multipoles and k-modes, are now confirmed by other groups [17–21].

The extent of depolarization, encoded in the depolarization factor, can be predicted – if the
range of fully depolarized modes is assumed. For positive lepton asymmetry A =

∫ 1
−1 dvGv > 0,

we find in the two-flavor approximation,

f Dv ≈



1
2 −

A
4γ0
− 3A

8γ0
v if 1 ≥ v ≥ 0 ,

1
2 if −1 ≤ v ≤ 0 ,

(14)

where γ0 =
∫ 1

0 dvGv. A generalization to restricted-three-flavor scenario where the initial condi-
tions and evolution of the µ and τ flavors are taken to be identical, is easy. One finds

f D, 3 flav
v =




4 f D
v

3 if f D
v < 1

2 ,
1+2 f D

v

3 if f D
v > 1

2 .
(15)
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The depolarized flavor distributions and the depolarized fluxes are given in terms of the original
distributions and forward moments of the depolarization factor [10]. These are approximate but
readily usable ingredients for implementation in supernova/nucleosynthesis simulations and for
computations of neutrino signals. It is our expectation that results such as these can be easily used
in prescription-based implementations of neutrino-mixing in simulations.

5. Conclusions

• We show that it is necessary for the phase space distributions of two flavors to cross each
other in order to initiate a collective instability. This answers the first question, cementing
the expectation articulated in ref. [22].

• We strongly indicate that neutrino flavors get almost democratically mixed-up, on coarse-
grained scales, but for the conservation of lepton asymmetry. This asymmetry, prevents
flavor-equalization of forward neutrinos for positive asymmetry (relevant for supernovae) and
of backward neutrinos for negative asymmetry (relevant for neutron-star mergers). We expect
that such effects will have astrophysical consequences.
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