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1. Introduction

The new generation of long-baseline neutrino oscillation experiments such as DUNE are
expected to probe the robustness of the three-neutrino oscillation picture to a high level of accuracy.
They will also give stronger bounds and/or possibly detect deviations from the standard picture.
However, the ability to probe new physics in oscillations is going to be heavily affected by systematic
uncertainties coming from our lack of knowledge of the cross sections and fluxes involved. In the
case of the near detector (ND), these uncertainties are even larger.

2. Theoretical framework and notation

This proceeding summarizes our results regarding the sensitivity to non-unitarity and light
sterile neutrinos in Ref. [1].

A simple way to account for light neutrino masses is to add singlet fermions to the SM field
content. The matrix mixing between the mass and flavor basis can be expressed as:
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Here N is a 3 X 3 non-unitary matrix corresponding to the PMINS active-light sub-block. The value
of the mass of the new states will determine whether they can be produced in the neutrino beam or
not, changing the phenomenology we expect to observe. We have two distinct cases: if their mass
lies above the production threshold of the neutrino source they cannot be produced, this scenario
is usually referred to as Non-unitarity (NU); whereas if the new states are kinematically accessible
we call them light sterile neutrinos.

2.1 Parameterization

We will parametrize the deviations from unitarity of the matrix N as follows [2-5]:

N=(I-T)U 2)
where T is given by:
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and U plays the role of the standard (unitary) PMNS matrix up to small corrections encoded in a,g.

2.2 Non-Unitarity from new physics above the electroweak scale

In this scenario, the heavy states are integrated out from the low-energy spectrum and are thus
not kinematically accessible in the experiment. At very short distances, as the ones in the DUNE
ND, the standard oscillations do not have time to develop, yielding the following simple expressions
for the oscillations probabilities:
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2.3 Sterile neutrinos & Non-Unitarity from new physics at low scales

As we mentioned, sterile neutrinos are kinematically accesible and we expect a new oscillation
frequency. For simplicity, we consider the 3 + 1 scenario in which only one new neutrino is
introduced. At very short baselines, the oscillation probabilities read:
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In the averaged-out regime they further simplify to:
Pue =2 |(L[;14|2|7/{e4|2 = 2|a',uelza P,u‘r = 2 |(L{,u4|2|7/{‘r4|2 = 2|a'7',u|2 (6)

Notice that, barring the factor 2, the new physics effects here are identical to those given in Eq.
4. Thus we can consider this regime as a low-scale source of non-unitarity effects.

3. Results

At the DUNE ND the sensitivity will be dominated by the spectral information, since even for
a value of a, g that saturates the present bound the signal is much smaller than the background. The
sensitivity comes mainly from the differences in energy shape between the background and signal.
Shape uncertainties are generally overlooked in the literature.

Comparing Eq. (4) with Eq. (6), we see that in the appearance channels there is only a factor 2
difference, and therefore, the results can be rescaled from one scenario to the other. Even though, in
oscillations they only differ by this factor 2, the bounds that apply for to each scenario are different.
In the Non-unitarity scenario we have very strong bounds from high-precision measurements of
electroweak processes which are not expected to be improved by near future oscillation experiments.
However, these constraints do not apply when the sterile neutrinos are kinematically accessible.
See [1, 6] for details.

Therefore, our results shown in Fig. 1 for a, (left panel) and a ., (right panel), respectively,
correspond to the averaged-out regime of the steriles. The different lines show the results for
different choices of systematic uncertainties as indicated by the labels, as a function of running
time.

In the sterile neutrino scenario, the DUNE ND will be sensitive to different oscillation channels.
Figure 2 shows the DUNE ND sensitivity to combination of mixing matrix elements that appear in
P,.. Looking at Eq. 5 we can see that the same parameters are accessible by the combination of
P.. and P,,,. Therefore, the three channels together will give us the best sensitivity.

4. Conclusions

In this work we have studied the sensitivity to new physics affecting neutrino oscillations in the
DUNE ND. We have presented a conservative but realistic approach, including shape uncertainties,
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Figure 1: Sensitivity to the off-diagonal NU parameters @, (left panel) and a,, (right panel). The
lines show the sensitivity at 90% CL for 1 degree of freedom (d.o.f.) as a function of the running
time At. The vertical lines indicate the changes between neutrino and antineutrino running modes
(in the nominal beam scenario) as well as the change to the high-energy beam.
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Figure 2: Expected sensitivity to the sterile neutrino scenario, for oscillations in the P, channel.
The shaded band to the left of the dashed lines indicate the increase in sensitivity due to the addition
of 3.5 years of data taken in the high energy mode.

for different scenarios and channels. Even though, the expected sensitivity is, therefore, reduced
we generally expect an improvement over present bounds.
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