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In this work, we reconstruct the cold and dense matter equation of state (EoS) from the current
observational neutron star data. We achieve this by using a physics-based deep learning method
that utilizes the Automatic Differentiation technique. A deep neural network, EoS Network, is
deployed to represent the EoS in a model-independent way. A second neural network, the TOV-
Solver Network, is trained to solve the Tolman–Oppenheimer–Volkoff (TOV) equations. The EoS
Network is then combined with the pre-trained TOV-Solver Network and a gradient-based approach
is implemented to optimize the weights of the EoS Network, in an unsupervised manner. Thus,
the designed pipeline is trained to optimize the EoS, so as to yield through TOV equations, a
mass-radius (M-R) curve that best fits the observations. We present the EoS obtained from this
procedure, using the current neutron star observational data. The results are compatible with the
reconstructions from earlier works that used conventional methods and also with the limits of tidal
deformability obtained from the gravitational wave event, GW170817.
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1. Introduction

Neutron star (NS) observations provide useful insights into the dense matter equation of
state (EoS). The discovery of massive neutron stars [1–3], a binary neutron star merger event,
GW170817 [4], and NICER measurements of certain NS radii [5, 6] have all been able to add
constraints on the unknown EoS. This work is an attempt to infer the NS EoS from observational
data, based on a novel method. We present a physics-based deep learning algorithm that reconstructs
the NS EoS using the currently available mass-radius (M-R) observations of NSs. The proposed
technique utilizes a deep neural network (EoS Network) for a flexible representation of an EoS.
The EoS Network is then combined with a pre-trained TOV-Solver Network (as the name suggests,
the TOV-Solver Network is trained to output the M-R curve of any input EoS). The combined
framework is then optimized in the Automatic Differentiation (AD) framework, to output an EoS
which reproduces the M-R observations with the least error. A schematic representation of the
algorithm is depicted in Fig. 1.

Figure 1: A schematic representation of the proposed algorithm for reconstructing the neutron star EoS via
automatic differentiation. The trainable weights in the gradient-based optimization include the parameters
from the EoS Network. The weights of the pre-trained TOV-Solver Network are frozen in this framework.

2. Physics-driven deep learning

Earlier works have proven that physics-driven deep learning methods have the potential to
surpass traditional methods in solving inverse problems [7, 8]. In this work, we use the AD
framework to invert the TOV equations, i.e. to reconstruct the NS EoS from M-R observations.
The pipeline in Fig. 1 consists of two differentiable modules: the EoS Network, and the TOV-Solver
Network. The former uses an unbiased representation for the EoS. It uses a constant density array
𝜌, and outputs the corresponding pressure, 𝑃𝜃 (𝜌). The latter is a pre-trained emulator for solving
the TOV equations [9]. It was trained and tested on a multitude of piece-wise polytropic EoSs
and their corresponding M-R curves. When compared to numerical methods like the Euler or
Runge-Kutta, the network emulator is superior in computational efficiency (∼ 106 sec quicker).
Furthermore, the TOV-Solver Network is easily differentiable, an aspect that is critical for applying
back-propagation in the AD framework. Linked with the well-trained TOV-Solver Network, the EoS
Network is optimized in an unsupervised way. A detailed structure of the networks, their training
procedures and performances can be found in [9].

Assuming 𝑁obs number of NS observations, we train the EoS Network to fit the M-R output
from the devised pipeline to these 𝑁obs M-R observations. The optimization procedure deploys a
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gradient-based algorithm within the AD framework to reduce the loss function, 𝜒2, which is given
as,

𝜒2 =

𝑁obs∑︁
𝑖=1

(𝑀𝑖 − 𝑀obs,𝑖)2

Δ𝑀2
obs,𝑖

+
(𝑅𝑖 − 𝑅obs,𝑖)2

Δ𝑅2
obs,𝑖

. (1)

Here, the TOV-Solver Network predictions are (𝑀𝑖 , 𝑅𝑖)’s, the observations and their associated
uncertainties are (𝑀obs,𝑖 , 𝑅obs,𝑖)’s and (Δ𝑀obs,𝑖 ,Δ𝑅obs,𝑖)’s respectively. The gradients of 𝜒2 with
respect to the weights of the EoS Network are,

𝜕𝜒2

𝜕𝜃
=

𝑁obs∑︁
𝑖=1

∫ [
𝜕𝜒2

𝜕𝑀𝑖

𝛿𝑀𝑖

𝛿𝑃𝜃 (𝜌)
+ 𝜕𝜒2

𝜕𝑅𝑖

𝛿𝑅𝑖

𝛿𝑃𝜃 (𝜌)

]
𝜕𝑃𝜃 (𝜌)

𝜕𝜃
d𝜌. (2)

In Eq. 2, the terms 𝛿𝑃𝜃/𝛿𝜃, 𝛿(𝑀𝑖 , 𝑅𝑖)/𝛿𝑃𝜃 (𝜌) are implicit in the back-propagation algorithm.
Thus, the optimization of the EoS Network executed by maximizing the likelihood of observa-

tional M-R data, in an unsupervised paradigm. In other words, the aim is to minimize 𝜒2 (Eq. 1).
The observational data is, however, very limited and scattered across the M-R plane with large un-
certainties. Moreover, the central density of an observation is unknown. This value is determined
in each iteration by the ‘closest approach’ [10], i.e.

𝜌𝑐𝑖 = arg min
𝜌𝑐

(𝑀 (𝜌𝑐) − 𝑀obs,𝑖)2

Δ𝑀2
obs,𝑖

+
(𝑅(𝜌𝑐) − 𝑅obs,𝑖)2

Δ𝑅2
obs,𝑖

. (3)

This way, we implement Eq. (3) to reduce the difference between the M-R observations and the
M-R curve obtained from the TOV-Solver Network. Therefore, the loss in each iteration during the
training is,

𝜒2 =

𝑁obs∑︁
𝑖=1

(𝑀 (𝜌𝑐𝑖) − 𝑀obs,𝑖)2

Δ𝑀2
obs,𝑖

+
(𝑅(𝜌𝑐𝑖) − 𝑅obs,𝑖)2

Δ𝑅2
obs,𝑖

, (4)

where 𝜌𝑐𝑖 is the updated central density. In order to account for measurement uncertainties of the
M-R observational data into the reconstructed EoS, we sample several M-R curves from the normal
distribution around each observation. The procedure mentioned above is repeated for each M-R
curve, thereby resulting in several reconstructed EoSs. We reject the reconstructed EoSs that do
not comply with the causal condition or those that fail to support a 1.9𝑀⊙ star. With the remaining
EoSs, we define a posterior distribution, which factors in the uncertainties of the M-R data.

3. Results

In order to examine the potential of the proposed method, we conducted several tests on mock
M-R data [9]. We further tested the performance of the algorithm on reconstructing a couple of RMF
EoSs [9]. Here, we present the results of the reconstructed EoS from existing M-R observations
of NSs [5, 6, 11–13]. We fit each observational uncertainty with a 1D normal distribution for
both the mass and radius, independently [14]. From the distribution, we sample several points for
mass and radius, consequently sampling a multitude of M-R curves. The proposed method is then
applied on each M-R curve to reconstruct several EoSs. On filtering the EoSs as descibed in the
previous section, we obtain a posterior distribution for the reconstructed EoS. We depict the 68%
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confidence interval (CI) of the reconstructed EoS in the left panel of Fig. 2, as a red shaded band.
The corresponding M-R curve is represented by the red band in the right panel of Fig. 2. We further
deduce the tidal deformability of the reconstructed EoS and test the results against the data from
GW170817.The tidal deformability of a 1.4𝑀⊙ neutron star, Λ1.4, from the reconstructed EoS is
estimated at Λ1.4 = 224+107.3

−107.3 (95% CI). This range lies within the estimated range of Λ1.4 =190+390
−120,

obtained from the gravitational wave event, GW170817 [15].
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Figure 2: The left panel depicts the 68% CI of the reconstructed EoS from the proposed algorithm. The
corresponding M-R curve is plotted in the right panel.

Any bias introduced by the TOV-Solver Network can be eradicated by using the TOV equations
instead. This method would involve calculation of the linear response of an M-R curve to a change
in the EoS. Furthermore, the lack of NS observations below 1𝑀⊙, or a physical explanation for the
production of such NSs, gives rise to small deviations in the low-density region of the reconstructed
EoS, even in an ideal scenario where uncertainties are ignored [9]. The maximum mass of a
non-rotating NS is still under speculation, and could add further inference on the NS EoS. With the
upcoming telescopes and gravitational-wave detectors, an improved precision is expected on NS
observations. In addition to an anticipated increase in the number of observations, this would imply
a finer reconstruction of the NS EoS in future.

This work is supported by HGS-HIRe for FAIR, Deutscher Akademischer Austauschdi-
enst (DAAD), GSI-F&E, BMBF, SAMSON AG, Xidian-FIAS International Joint Research Cen-
ter (XFĲR), INFN, U.S. Department of Energy, Office of Science, Office of Nuclear Physics, grant
No. DE-FG88ER40388 and the Walter Greiner Gesellschaft.
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