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Relativistic shocks have a central role in high energy astrophysical phenomena, with Gamma-Ray
Bursts being the most prominent example. Their propagation in perfectly conductive plasmas
has been extensively studied. In the present work we extend the analysis by assuming a finite
electrical conductivity for the propagation medium and a finite thickness for the shock front.
These two assumptions necessitate the inclusion of an additional jump condition derived through
the covariant Gauss-Ampère Law and introduce a dimensionless parameter which depends on the
electrical conductivity of the plasma in the shock front, the shock thickness, as well as on the
shock’s propagation four-velocity. We show that this parameter determines the degree to which the
shock interacts with the propagation medium’s electromagnetic field and governs shock dynamics.
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1. Introduction

Relativistic shocks possess a central role in a multitude of high energy astrophysical phenomena,
by acting as a mechanism for particle acceleration while also providing a way to transfer thermal
and kinetic energy to the propagation medium. Relativistic shocks are closely associated with
relativistic outflows, produced either by an accreting compact object, during violent processes such
as Gamma-Ray Bursts (GRBs), or during a Tidal Disruption Event (TDE). These shocks occur both
in the interior of such outflows (internal shocks) or when they interact with their environment [1],
[2]. While the propagation of relativistic shocks in perfectly conductive plasmas has been studied
by numerous authors, for instance [3] and [4], their propagation in media characterized by a finite
electrical conductivity has yet to be examined analytically. In this work we aim to comprehend the
effects of the propagation medium’s finite electrical conductivity on the properties of the post-shock
medium, through the numerical solution of the jump conditions.

2. Jump Conditions for a Medium with Finite Conductivity

Following Taub [5], we express the covariant laws governing relativistic plasma flows in integral
form. The tensors are projected on a spacelike four-vector 𝑆𝜇, perpendicular to the timelike shock
hypersurface 𝛴 in Minkowski space [6]. The resulting covariant expressions for the jump conditions
are:

[𝑁𝜇]𝑆𝜇 = 0 , [𝑇 𝜇𝜈]𝑆𝜈 = 0 , [∗𝐹𝜇𝜈]𝑆𝜇 = 0 , [𝐹𝜇𝜈]𝑆𝜇 + 4𝜋L𝑠ℎ

𝑐
𝐽𝜈 = 0 , (1)

where [𝑄] = 𝑄2 − 𝑄1. The subscripts 1, 2 denote the propagation and the shocked medium
respectively. 𝐽𝜈 is the average four-current across the shock front’s width in Minkowski space L𝑠ℎ,
which in the shock frame corresponds to its physical width.

The 3 + 1 decomposition of Eqs. 1 provides the algebraic relations which determine the
boundary values at the shock front of all quantities describing the shocked medium as functions of
the respective quantities of the propagation medium. In this work we assume shock propagation
along 𝑥 and a transverse electromagnetic field: 𝑬1,2 = 𝐸1,2 𝑦̂, 𝑩1,2 = 𝐵1,2𝑧. The derived algebraic
relations are:

𝛾2𝜌2(𝛽𝑠ℎ − 𝛽2) = 𝜌1𝛽𝑠ℎ , (2)

𝛾2
2 (𝜖2 + 𝑃2) (𝛽𝑠ℎ − 𝛽2) − 𝑃2𝛽𝑠ℎ +

𝐸2
2 + 𝐵2

2
8𝜋

𝛽𝑠ℎ −
𝐸2𝐵2
4𝜋

= 𝜖1𝛽𝑠ℎ +
𝐸2

1 + 𝐵2
1

8𝜋
𝛽𝑠ℎ −

𝐸1𝐵1
4𝜋

, (3)

𝑃2 − 𝛾2
2 (𝜖2 + 𝑃2) (𝛽𝑠ℎ − 𝛽2)𝛽2 +

𝐸2
2 + 𝐵2

2
8𝜋

− 𝐸2𝐵2
4𝜋

𝛽𝑠ℎ = 𝑃1 +
𝐸2

1 + 𝐵2
1

8𝜋
− 𝐸1𝐵1

4𝜋
𝛽𝑠ℎ , (4)

𝐸2 − 𝛽𝑠ℎ𝐵2 = 𝐸1 − 𝛽𝑠ℎ𝐵1 , (5)

𝐸2𝛽𝑠ℎ − 𝐵2 − 𝐸1𝛽𝑠ℎ + 𝐵1 =
4𝜋𝜎𝜉L𝑠ℎ

𝑐Γ𝑠ℎ
(𝛾2(𝐸2 − 𝛽2𝐵2) + 𝐸1) . (6)
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Figure 1: The shock propagates along the 𝑥-axis with velocity 𝛽𝑠ℎ in the propagation medium’s frame

(medium 1). In this frame the shock thickness is
L𝑠ℎ

Γ𝑠ℎ
.

The average current in the plasma frame is 𝐽𝑐𝑜 is written as:

𝐽𝑐𝑜 = 𝜎𝐸̃𝑐𝑜 = 𝜎𝜉 (𝐸𝑐𝑜
2 + 𝐸𝑐𝑜

1 ) (7)

with 𝜉 a dimensionless constant of order unity and 𝜎 the electrical conductivity of the plasma in
the shock front. 𝑬𝑐𝑜 = 𝛾(𝑬 + 𝜷 × 𝑩) is the medium’s comoving electric field, while Γ𝑠ℎ𝛽𝑠ℎ is
the shock propagation four-velocity in the propagation medium’s rest frame. Due to the chosen
geometrical configuration of the electromagnetic field, the current density is perpendicular to the
flow velocity. Consequently, it is unaffected by Lorentz boosts between inertial frames of reference.

The system of equations is closed by the inclusion of an Equation of State (EoS). The EoS
assumed here is the Taub-Matthews (TM) EoS [7], according to which the fluid’s total internal
energy is related to its pressure through the relation:

𝜖 =
3
2
𝑃 +

√︂
9
4
𝑃2 + 𝜌2𝑐4 (8)

The numerical solutions are obtained by solving the algebraic relations 2-6 for {𝜌2, 𝜖2, 𝑃2, 𝐸2, 𝐵2}
as functions of the corresponding quantities of the propagation medium and 𝛾2. 𝜌2, 𝜖2, 𝑃2 are then
substituted into Eq. 8, which is solved numerically for 𝛾2. The solutions are derived with respect
to the value of a dimensionless parameter 𝛼 defined as:

𝛼 = 𝜉
𝑐𝛾2Γ𝑠ℎ (𝛽𝑠ℎ − 𝛽2)L𝑠ℎ

𝜂
(9)

with 𝜂 =
𝑐2

4𝜋𝜎
the magnetic diffusivity of the plasma in the shock front and 𝛾2Γ𝑠ℎ (𝛽𝑠ℎ− 𝛽2) = 𝛾2𝛽2

the shocked plasma four-velocity in the shock frame.
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Defining the dissipative length as L𝜎 =
𝑐

4𝜋𝜎
, the previous relation can be rewritten as:

𝛼 = 10𝜉
(
𝛾̃2𝛽2
10

)
L𝑠ℎ

L𝜎

. (10)

L𝑠ℎ and L𝜎 are normalized to the gyroradius of the plasma’s thermal protons 𝑟𝑔 =
𝛾𝑚𝑐𝑢𝑇ℎ

𝑒𝐵
, which

for a plasma with 𝑇 = 109 𝐾 and 𝐵 = 1𝐺 is approximately equal to 410𝑚. The characteristic
conductivity value for which L𝜎 becomes equal to 𝑟𝑔 is 56240 𝑠−1.

3. Numerical Results

By applying the algorithm detailed in the previous section, we obtained numerical solutions for
a shock propagating with a Lorentz factor Γ𝑠ℎ = 100 in the propagation medium’s frame, for three
different cases of cold propagation media (𝑃1 ≪ 𝜌1𝑐

2) with normalized magnetic energy densities

B =
𝐵2

1
8𝜋𝜌1𝑐2 = 0.1, 1, 10.
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Figure 2: The shocked medium’s Lorentz factor 𝛾2, thermal pressure 𝑃2, magnetic field 𝐵2, and comoving
electric field 𝐸𝑐𝑜

2 for a shock propagating with Γ𝑠ℎ = 100.

We identify two characteristic regimes in our solutions with respect to the electromagnetic
field’s behavior, corresponding to:

• Vacuum Electrodynamics: 𝛼 ≪ 1

• Ideal MHD: 𝛼 ≫ 1
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For 𝛼 ≪ 1, the fluid is essentially decoupled from the electromagnetic field. No current density
develops in the shock front, which is why the electric and magnetic field experience no change due to
the shock propagating in the conducting propagation medium. The hydrodynamic quantities of the
medium obey the purely hydrodynamic relativistic jump conditions, which for strongly relativistic
shocks are [8]:

𝛾2 =
Γ𝑠ℎ√

2
(11)

𝛾2𝜌2 = 2Γ2
𝑠ℎ𝜌1 (12)

𝑃2 =
2Γ2

𝑠ℎ

3
𝜌1𝑐

2 (13)

On the other hand, for 𝛼 ≫ 1, the ideal MHD jump conditions are satisfied.
The post-shock medium’s total pressure closely follows the relation 𝑃𝑡𝑜𝑡𝑎𝑙 ∼ Γ2

𝑠ℎ
for strongly

relativistic shocks irregardless of the value of 𝛼. The same behavior is exhibited by the rest of the
post-shock quantities.
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Figure 3: The sum of the thermal and electromagnetic pressure of the post-shock medium with respect to
the shock propagation Lorentz factor for varying 𝛼.

4. Conclusions

In the present work we considered the propagation of relativistic shocks in magnetized media
characterized by a finite electrical conductivity. We derived the covariant equations expressing the
jump conditions across a shock front of finite thickness and obtained numerical solutions to the 3+1
decomposed algebraic equations for a strongly relativistic shock propagating in a cold conductive
medium with a transverse electromagnetic field. A dimensionless parameter 𝛼 which depends on
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the medium’s electrical conductivity was defined, the value of which governs shock dynamics. The
numerical solutions reveal the existence of two characteristic regimes, one for 𝛼 ≪ 1, in which the
fluid and the electromagnetic field are decoupled and the only quantities experiencing a jump across
the shock front are the hydrodynamic quantities of the propagation medium. In the second regime,
for 𝛼 ≫ 1, the propagation medium behaves as a perfect conductor and the ideal MHD conditions
are obtained.

Aside from providing physical insight into the more realistic picture of shock propagation in
finite conductivity media, the present analysis also finds practical applications in the construction
of improved Riemann solvers for resistive relativistic magnetohydrodynamics.
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