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Transverse-momentum dependent collinear functions

1. Introduction

Transverse-momentum (qT) resummation is fully developed for the inclusive-production pro-
cesses of high-mass colourless systems in hadron–hadron collisions. In the kinematical region
where the qT of the produced system is much smaller than its invariant mass M, the perturbative
QCD computation of the qT -differential cross section leads to large logarithmic contributions of
the type lnn(M2/q2

T ). The QCD resummation procedure organises and systematically sums these
large contributions to all perturbative orders in the strong coupling αS. In this talk we refer to the
qT resummation formalism of Refs. [1, 2, 3, 4].

Transverse-momentum resummation is conveniently carried out in impact parameter (b) space,
Fourier conjugate to qT space. We directly consider and refer to the notation in Ref. [4]. The b
space cross section at bM � 1 is expressed in terms of the parton distribution functions (PDFs)
of the colliding hadrons and of perturbatively calculable factors. In this talk we are mainly inter-
ested in the process-independent partonic factors Cca (see Eqs. (11) and (14) in Ref. [4]). Here
the subscript a (a = q, q̄,g) denotes the type of initial-state colliding parton, while the subscript
c (c = q, q̄,g) refers to the parton that produces the high-mass system through hard scattering.
Within formulations [5, 6] of qT resummation that are based on Soft Collinear Effective Theory
(SCET) methods, the factors Cca are directly related to the so-called matching coefficients between
transverse-momentum dependent (TMD) parton distributions and customary PDFs.

The quark collinear function Cqa depends on the longitudinal-momentum fraction z transferred
in the collinear-radiation process, and it is computable as a power series expansion in αS as follows

Cqa (z;αS) = δqaδ (1− z)+
αS

π
C(1)

qa (z)+
∞

∑
m=2

(
αS

π

)m
C(m)

qa (z) . (1.1)

The gluon collinear function Cµν
ga has a richer structure since it also depends on the Lorentz in-

dices µ and ν of the gluon in the hard-scattering amplitude and its complex-conjugated amplitude,
respectively that produces the high-mass system. The structure of the partonic tensor Cµν

ga is [3]

Cµν
ga (z; p1, p2,b;αS) = dµν(p1, p2)Cga(z;αS)+Dµν(p1, p2;b)Gga(z;αS) , (1.2)

where dµν(p1, p2) = −gµν +(pµ

1 pν
2 + pµ

2 pν
1 )/(p1 p2), Dµν(p1, p2;b) = dµν(p1, p2)− 2bµbν/b2.

The light-like vectors pµ

1 and pµ

2 (p2
i = 0, i = 1,2) in Eq. (1.2) denote the momenta of the initial-

state colliding partons. In a reference frame in which the colliding hadrons are back-to-back,
we can consider light-cone coordinates and we have pµ

1 = (p+1 ,0T,0) and pµ

2 = (0,0T, p−2 ). The
momentum bµ = (0,b,0) is the impact parameter vector in the four-dimensional notation. The
gluon collinear functions Cga and Gga in Eq. (1.2) have the following perturbative expansions:

Cga (z;αS) = δgaδ (1− z)+
αS

π
C(1)

ga (z)+
∞

∑
m=2

(
αS

π

)m
C(m)

ga (z) , (1.3)

Gga (z;αS) =
αS

π
G(1)

ga (z)+
(

αS

π

)2
G(2)

ga (z)+
∞

∑
m=3

(
αS

π

)m
G(m)

ga (z) . (1.4)

The structure of Eq. (1.2) is the consequence of collinear correlations [3] that are produced by
the evolution of the colliding hadrons into gluon partonic states. In particular, the contribution
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Transverse-momentum dependent collinear functions

of the tensor factor Dµν in Eq. (1.2) leads to spin and azimuthal correlations [3, 7] in the hard-
scattering production of the observed high-mass system at small values of qT . This contribution is
sometimes denoted as the contribution of linearly-polarised gluons [8] to TMD factorisation and
qT resummation. The size of the azimuthal correlations of collinear origin is controlled by the
perturbative function Gga in Eq. (1.4).

The azimuthally-uncorrelated quark and gluon collinear functions Cqa and Cga in Eqs. (1.1)
and (1.3) are known up to next-to-next-to-next-to-leading order [9, 10, 11] in QCD perturbation
theory, namely up to O(α3

S). The azimuthally-correlated gluon collinear functions Gga(z;αS) in
Eqs. (1.2) and (1.4) are instead known up to O(α2

S). The first-order coefficients G(1)
ga were computed

in Ref. [3]. The second-order terms G(2)
ga (z) have been obtained more recently in Refs. [5] and [6].

Our independent computation of G(2)
ga (z) confirms the results of Refs. [5, 6].

The qT resummation formalism can be extended to processes that are related by kinematical
crossing to the hadroproduction processes. The corresponding resummation formulae are analo-
gous to that for hadron–hadron collisions and they involve a main difference through the replace-
ment of the PDFs with the parton fragmentation functions (PFFs) of the triggered hadrons in the
final state. In the resummation formulae the PFFs are convoluted with computable perturbative
functions that embody the effect of QCD radiation collinear to the final-state partons. These per-
turbative functions for the time-like (TL) collinear evolution have the same structure as the initial-
state collinear functions Cqa,Cga and Gga in Eqs. (1.1, 1.2, 1.3) and (1.4), and they are denoted by
CT L

qa ,CT L
ga , and GT L

ga in this talk.

2. Details of our computational method: differential and TMD collinear functions

In this talk, we compute the collinear functions introduced in Sec. 1 starting from the evalua-
tion of QCD scattering amplitudes. At the bare level, the computation exhibits ultraviolet (UV) and
infrared (IR) divergences. We regularise both the divergences by working in d = 4−2ε space-time
dimensions. In particular, we use the conventional dimensional regularisation (CDR) scheme, in
which on-shell gluons have d−2 physical states of spin polarisations and on-shell massless quarks
(or antiquarks) have 2 spin polarisation states. The dimensional regularisation scale is denoted by
µ0.

QCD scattering amplitudes are singular in the kinematical configurations in which two or
more momenta of their external massless partons become collinear. The singular behaviour in
the collinear limit is described by a factorisation formula that has a process-independent structure.
Following Ref. [12], we write the collinear factorisation formula in its most general form as follows

|M ({qi};k1, . . . ,kN) |2 = 〈M
(
{qi}; k̃

)
|P

(
{qi};k1, . . . ,kN ;n

)
|M
(
{qi}; k̃

)
〉+ . . . , (2.1)

where the dots on the right-hand side denote non-singular terms in the collinear limit. Here, M

denotes the on-shell scattering amplitude in colour+spin space notation of a generic hard-scattering
process, and |M |2 is the corresponding squared amplitude. In Eq. (2.1) we are considering the
limit in which the momenta k1, . . . ,kN of N external massless QCD partons become collinear. The
momenta of the other external partons of M are q1,q2, . . . and their dependence through momenta
and other quantum numbers is denoted by {qi}. The singular behaviour in the collinear limit

2



P
o
S
(
L
L
2
0
2
2
)
0
4
5

Transverse-momentum dependent collinear functions

is embodied in the factor P , while M
(
{qi}; k̃

)
denotes the reduced scattering amplitude that is

obtained from M ({qi};k1, . . . ,kN) by replacing the N collinear partons with a single parent parton
with momentum k̃.

In Eq. (2.1), k̃ and k1, . . . ,kN are the outgoing momenta of the corresponding external partons.
The scattering amplitude M (and the kernel P) is evaluated in different physical kinematical re-
gions depending on the sign of the ‘energies’ of the outgoing momenta. If the energies of k1, . . . ,kN

are all positive, we are dealing with the TL collinear region. Otherwise, we are considering the
space-like (SL) collinear region. The distinction between TL and SL collinear regions is, in gen-
eral, very relevant. Indeed, in the case of the TL collinear region the splitting kernel P has the
relevant property of being completely process independent: it does not depend on the momenta and
quantum numbers of the non-collinear partons in M . This property of strict collinear factorisation
is instead violated in the SL collinear regions [12]. The collinear splitting kernels P at O(αS)

are well known and at O(α2
S), they are fully known [13, 14, 15, 16, 17] for both the TL and SL

collinear regions [12].

Considering the TL region, the splitting kernels P are process independent and proportional
to the unit matrix in colour space. However, the dependence of Pc→a1...aN (where ai denotes the
flavour of the collinear parton with momentum ki, and c is the flavour of the parent parton) on
the spin of the parent collinear parton c can be instead non-trivial [14] and it is different for the
cases c = q, q̄ and c = g. In the case of collinear splitting of a quark or antiquark, spin correlations
are completely absent while they are present in the collinear splitting of a gluon through a rank-2
tensor.

The tensor dependence of Pµν
g→a1···aN is due to terms that are proportional to either the metric

tensor gµν or to quadratic terms of the type kµ

iT kν
j T , where kµ

iT is the transverse momentum of the i-
th collinear parton with respect to the collinear direction. The remaining dependence of Pc→a1···aN

(c = q, q̄,g) is due to scalar functions of the collinear momenta k1, . . . ,kN . These functions are
the sub-energies si j = 2kik j and the ratios xi/x j of the longitudinal-momentum fractions xi and
x j of the momenta ki and k j. The most general definition [14] of the longitudinal-momentum
fractions is obtained by introducing an auxiliary reference vector nµ that is far away from the
collinear direction. Then the collinear splitting kernels depend on the ratios xi/x j that are defined
as xi/x j = nki/nk j. In the literature the reference vector nµ is usually chosen to be a light-like
vector (i.e., n2 = 0). However, we emphasise that one can also set n2 6= 0. In this talk we introduce
and use a time-like auxiliary vector nµ (n2 > 0). Note that we do not modify any formal expression
of the splitting kernels P in the literature. Simply, we use the freedom of arbitrarily choosing
n2 ≥ 0 in the collinear limit.

After our discussion of the structure of Eq. (2.1) in the TL collinear region, we define differ-
ential TL collinear functions F TL

ca (c,a = g,q, q̄) as follows [18]. We consider the production of
a parton of flavour a and momentum pµ in the physical final state and we fully integrate over the
accompanying collinear radiation by keeping its total momentum k fixed. If the parent collinear
parton c is a gluon, we have to take into account the spin correlations, and the precise definition of
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the collinear function F TL µν
ga is

F TL µν
ga (p,k;n) =

+∞

∑
N=2

[
N−1

∏
m=1

∫ ddkm

(2π)d−1 δ+

(
k2

m
)]

δ
(d)

(
k−

N−1

∑
i=1

ki

)

× ∑
a1,...,aN−1

P̃µν
g→a1...aN (k1, . . . ,kN ;n)
SF(a1, . . . ,aN−1)

∣∣∣∣∣kN= p
aN=a

, (2.2)

where SF(a1, . . . ,aN−1) is the Bose symmetry factor for the identical particles in the final state.
The parton momentum pµ precisely specifies the collinear direction, and we can use a light-cone
reference frame where pµ = (p+,0T,0) with p+ > 0. In this frame we have kµ

i = (k+i ,kiT,k−i ) and
kµ = (k+,kT,k−). The auxiliary TL vector n has coordinates nµ = (n+,0T,n−), with n2 = 2n+n−>
0. The case of a light-like vector nµ is obtained by setting n+ = 0. The gluonic kernel P̃µν

in Eq. (2.2) is given by P̃µν
g→a1...aN (k1, . . . ,kN ;n) = dµ

µ ′(p;n) Pµ ′ν ′
g→a1...aN (k1, . . . ,kN ;n) d ν

ν ′ (p;n),
where the spin polarization tensor, dµν(p;n) = −gµν +(pµnν + nµ pν)/(np)− (n2 pµ pν)/(np)2 .

The use of P̃µν in Eq. (2.2) removes purely longitudinal terms, proportional to pµ or pν , from
F TL µν

ga . The function F TL µν depends on the vectors p,k,n and it is orthogonal to both p and n.
Therefore it has the following decomposition in tensor structures:

F TL µν
ga (p,k;n) = dµν(p;n) F TL

ga,az.in.(p,k;n)+Dµν(p,n;kT,ε) F TL
ga,corr.(p,k;n) , (2.3)

where Dµν(p,n;kT,ε) = dµν(p;n)− (d − 2)kµ

T kν
T/kT

2. The tensor Dµν in Eq. (2.3) leads to
correlations with respect to the azimuthal angle of the transverse-momentum vector kT. The
scalar functions F TL

ga,az.in. and F TL
ga,corr. control the size of the azimuthal un-correlated and cor-

related contributions to F TL µν
ga , respectively. The tensors in Eq. (2.3) are the d-dimensional gen-

eralisation of those in Eq. (1.2) and they fulfil following relations: dµν(p;n)Dµν(p,n;kT,ε) =

0 ,dµν(p;n)dµν(p;n) = d − 2 ,Dµν(p,n;kT,ε)Dµν(p,n;kT,ε) = (d − 2)(d − 3) , with d − 2 =

2− 2ε and d− 3 = 1− 2ε . The scalar functions F TL
ga,az.in. and F TL

ga,corr. can be easily and directly
expressed in terms of the collinear splitting kernels Pµν

g→a1...aN using the above relations. The TL
collinear function F TL

ca (p,k;n) (c = q, q̄) of a parent collinear fermion c is defined analogously to
the gluon collinear function F TL

ga (p,k;n) by simply performing the replacements F TL µν
ga →F TL

ca

and P̃g→a1...aN →Pc→a1...aN in Eq. (2.2).
The SL collinear splitting kernels P in the factorisation formula (2.1) are, in general, process

dependent and, in particular, they can depend on the colour indices and momenta of the non-
collinear partons and on the colour indices of the parent collinear parton c in the hard-scattering
process. The general extension F ca of the TL collinear function in Eqs. (2.2) to the SL collinear
regions is as follows

F ca({qi}; p,k;n) =
+∞

∑
N=2

[
N−1

∏
m=1

∫ ddkm

(2π)d−1 δ+

(
k2

m
)]

δ
(d)

(
k−

N−1

∑
i=1

ki

)
(2.4)

× ∑
a1,...,aN−1

P̃ c̄→a1...aN ({qi};k1, . . . ,kN ;n)
SF(a1, . . . ,aN−1)

∣∣∣∣∣kN=−p
aN= ā

Nc(ε)

Na(ε)
, c = g,q, q̄ ,

where a denotes the parton with momentum pµ that collides in the physical initial state and c
refers to the incoming parton of the hard-scattering process after the radiation of the final-state
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collinear partons with total momentum kµ . The function Na(ε) in Eq. (2.4) is given by Na(ε) =

(−1)2Sans(a,ε)nc(a), where Sa denotes the spin, ns(a,ε) denotes the number of spin polarisation
states, and nc(a) denotes the number of colours of the parton a. Therefore, we have Nq(ε) =

Nq̄(ε) =−2Nc and Ng(ε) = 2(1− ε)(N2
c −1).

Considering perturbative contributions at O(αS) and O(α2
S), the SL collinear kernels P and

functions F are also process independent and proportional to the unit matrix in the colour space of
the hard-scattering partons. Therefore, we can factorise such overall (and trivial) colour space de-
pendence in both sides of Eq. (2.4), and we can simply deal with c-number SL collinear functions,
analogously to the TL collinear case. Such SL collinear functions are denoted as F µν

ga (p,k;n),
Fga,az.in.(p,k;n), Fga,corr.(p,k;n), and Fca(p,k;n) (c = q, q̄).

The TL and SL differential collinear functions can be used to define inclusive functions that are
directly related to the perturbative computation and resummation of large logarithmic contributions
to hard-scattering observables. In the following we define TMD collinear functions [18] that lead
to the resummation coefficients which we have discussed in the Sec. 1. We first consider the TL
collinear region. We use the gluon collinear function F TL µν

ga (p,k;n) of Eq. (2.2) and we define the
gluon TMD function FTL µν

ga by integrating over the radiated collinear momentum k as follows

FTL µν
ga (z; p/z,qT;n) = δ (1− z) δ

(d−2)(qT) δga dµν(p;n)

+
∫

ddk δ
(d−2)(kT +qT) δ

(
k+

p+
− 1− z

z

)
F TL µν

ga (p,k;n) . (2.5)

The TMD function FTL µν
ga describes the inclusive perturbative fragmentation of a gluon into a

parton a. Similar to Eq. (2.3), the Eq. (2.5) can be further decomposed into FTL
ga,az.in. and FTL

ga,corr.

components. The quark (or antiquark) TMD function FTL
ca (c = q, q̄) can be defined analogously to

the gluon TMD function in Eq. (2.5). We note that FTL
ga,az.in.,F

TL
ga,corr., and FTL

ca are scalar functions
that depend on z and the vectors pµ ,nµ ,qT through the functional form z,qT

2 and n2qT
2/(2np/z)2.

The general SL TMD function Fca is obtained by analogy with the TL function in Eqs. (2.5)
and by taking into account that the SL collinear function F ca in Eq. (2.4) is, in general, process
dependent. The explicit definition of Fca is

Fca({qi};z;zp,qT;n) = 1 δ (1− z) δ
(d−2)(qT) δca

+ z
∫

ddk δ
(d−2)(kT +qT) δ

(
k+

p+
−1+ z

)
F ca({qi}; p,k;n) . (2.6)

The TMD function Fca is a process-dependent operator in colour+spin space. However, up to
O(α2

S) considered in this talk, the TMD function Fca is process independent following the process
independence of F ca.

3. Perturbative results

In this section we discuss the perturbative calculation of the SL collinear functions introduced
in Sect. 2. We consider explicit computations up to O(α2

S) and, hence, we simply refer to the
process-independent c-number functions. We left the computation of TL collinear functions to our
original article. The perturbative expansion of the collinear functions can be written as follows

F (p,k;n) = F (1R)(p,k;n)+
[

F (2R)(p,k;n)+F (1R1V )(p,k;n)
]
+O(α3

S) . (3.1)
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The notation in Eq. (3.1) applies to any specific collinear function and, therefore, we have not
explicitly denoted the corresponding subscripts and superscripts in F . The contribution to F at
O(αS) is due to F (1R), which corresponds to single real emission in the final state at the tree-level.
The contributions to F at O(α2

S) are F (2R) (double real emission at the tree level) and F (1R1V )

(single real emission with one-loop virtual corrections).
We express the contributions in Eq. (3.1) in terms of the unrenormalised (bare) QCD coupling

αu
S , which is related to the renormalised coupling αS(µ

2
R) in the MS renormalisation scheme as

follows:

α
u
S µ

2ε
0 Sε = αS(µ

2
R)µ

2ε
R

[
1− αS(µ

2
R)

π

β0

ε
+O

(
α

2
S(µ

2
R)
)]

, (3.2)

where β0 = (11CA−2N f )/12 and N f is the number of massless-quark flavours. The d-dimensional
spherical factor Sε is Sε = (4π e−γE )

ε and γE is the Euler number (γE = 0.5772 . . . ).
In the case of the azimuthally-independent functions F

(1R)
ca,az.in., the collinear kernels are pro-

portional to P̂ca(x;ε) [14], which are the d-dimensional real emission contributions to the Altarelli–
Parisi splitting functions for the leading order evolution of the PDFs. We have

F
(1R)
ca,az.in.(p,k;n) =

αu
S µ2ε

0 Sε

π

eεγE

π1−ε

δ+(k2)

pk
1
zn

P̂ca(zn;ε) , c = g,q, q̄ , (3.3)

where we have introduced the notation F
(1R)
ca ≡F

(1R)
ca,az.in. (c = q, q̄) for the collinear functions in

the quark and antiquark partonic channels. The azimuthal-correlation contribution in the gluon
channel is

F
(1R)
ga,corr.(p,k;n) =−

αu
S µ2ε

0 Sε

π

eεγE

π1−ε

δ+(k2)

pk
Ca

1− zn

z2
n

, (3.4)

where Ca is the Casimir colour coefficient of the parton a = q, q̄,g. The expressions of F (1R) in
Eqs. (3.3) and (3.4) depend on the auxiliary vector nµ through the variable zn, zn = n(p− k)/np.
In the exact collinear limit (i.e., k− = 0) the parent hard-scattering parton c in F

(1R)
ca carries the

momentum zn pµ , independently of the value of n2.
The SL TMD functions Fca are obtained from the differential collinear functions Fca by using

Eq. (2.6). The terms F
(1R)
ca , F

(2R)
ca , and F

(1R1V )
ca in Eq. (3.1) produce corresponding contributions

to the TMD functions that are denoted as F(1R)
ca , F(2R)

ca , and F(1R1V )
ca , respectively.

We immediately discuss the dependence on the auxiliary vector nµ , which affects F(1R)
ca through

the variable zn. The key point regards the effect of the singular contribution of P̂ca(zn;ε) to F
(1R)
ca

and, hence, to F(1R)
ca . Such contribution is proportional to the following factor:

1
1− zn

=
np
nk

=
p+

k++ n2

2np
k−
n− p+

=
1

1− z+ n2qT2

(1−z)(2np)2

, (3.5)

where in the last equality we have implemented the kinematics of the TMD collinear function at
O(αS) (i.e., k2 = 0,k+ = (1−z)p+,kT =−qT). Setting n2 = 0, the factor in Eq. (3.5) becomes (1−
z)−1 and, therefore, it is divergent (and not integrable over z) at z = 1. Correspondingly, the first-
order contributions F(1R)

ca to the TMD collinear functions are divergent. Such divergences, which
are known as rapidity divergences in the literature, are a general feature of SCET formulations of
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TMD functions, and they can be treated by introducing appropriate regularisation procedures. In
our computations of the TMD functions we use n2 > 0, thus avoiding rapidity divergences. Indeed,
setting λ = n2qT

2/(2pn)2 in Eq. (3.5), we can use the following relation:

1
1− z+ λ

1−z

=

(
1− z

(1− z)2 +λ

)
+

+δ (1− z)
∫ 1

0
dz′

1− z′

(1− z′)2 +λ

=
1
2

ln
(

1
λ

)
δ (1− z)+

(
1

1− z

)
+

+O(
√

λ ) , (3.6)

where the symbol
(

f (z)
)
+

denotes the customary ‘plus-distribution’ of the function f (z) with
respect to the variable z. The term of O(

√
λ )∼ O(qT) in Eq. (3.6) smoothly vanishes in the limit

qT→ 0 and, therefore, it can be neglected in the computation of F(1R)
ca . We can similarly neglect

other smooth terms in the limit qT→ 0 by using zn = z+O(qT
2) in the remaining zn dependence

of F(1R)
ca .
We introduce the Fourier transformation of the TMD collinear function Fca to the purpose of

having a more direct relation with the discussion in Sect. 1. The Fourier transformation F̃ca in b
space of the TMD collinear function Fca for the quark and antiquark partonic channels is

F̃ca

(
z;

b2

b2
0
,

n2b2
0

(2zpn)2 b2

)
≡
∫

dd−2qT e−ib.qT Fca

(
z;qT

2,
n2qT

2

(2zpn)2

)
, (3.7)

where the impact parameter b is a (d− 2)-dimensional vector. The numerical coefficient, b0 =

2e−γE . We note that nµ dependence of F̃ca occurs through the variable λ̃ = n2(b2
0/b2)/(2zpn)2.

Analogously, we can introduce the Fourier transformation in the gluon channel.
In general, the perturbative computation at O(αn

S) of the TMD functions in b space leads to
divergent pole terms 1/εm with 1≤ m≤ 2n. These divergences are of UV and IR origin. The UV
divergences are removed by using Eq. (3.2). The IR divergences are then factorisable. The TMD
functions in b space fulfil the following IR factorisation formulae [18]:

F̃ca,az.in.

(
z;

b2

b2
0
,

n2b2
0

(2zpn)2 b2

)
= Zc

(
αS(b2

0/b2),
n2b2

0
(2zpn)2 b2

)
×∑

b

∫ 1

z

dx
x

C̃cb

(
x;αS(b2

0/b2),ε,
n2b2

0
(2zpn)2 b2

)
Γ̃ba(z/x;b2

0/b2) , (3.8)

F̃ga,corr.

(
z;

b2

b2
0
,

n2b2
0

(2zpn)2 b2

)
= Zg

(
αS(b2

0/b2),
n2b2

0
(2zpn)2 b2

)
×∑

b

∫ 1

z

dx
x

G̃gb

(
x;αS(b2

0/b2),ε,
n2b2

0
(2zpn)2 b2

)
Γ̃ba(z/x;b2

0/b2) . (3.9)

Note that in the right-hand side of Eqs. (3.8) and (3.9) we use the renormalization scale µ2
R = b2

0/b2.
Therefore, the various functions Zc, Γ̃ba,C̃cb and G̃cb depend on αS(b2

0/b2). The factor Γ̃ba(x; µ2
F)

is the customary collinear-divergent function that defines the scale-dependent PDF fb(z; µ2
F) in the

MS factorisation scheme. After factorisation of the collinear ε poles, the b space TMD functions
still contain IR divergences that are factorisable in the perturbative functions Zc of Eqs. (3.8) and
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(3.9). The functions C̃cb and G̃gb are then finite and independent of n2 (i.e., n2(b2
0/b2)/(2zpn)2) in

the limit ε → 0, order-by-order in the perturbative expansion in powers of αS(b2
0/b2).

The IR finite function C̃ca of the azimuthal-independent component of the TMD function in
Eq. (3.8) has the following perturbative expansion:

C̃ca(z;αS,ε, λ̃ ) = δca δ (1− z)+
αS

π
C̃(1)

ca (z;ε, λ̃ )+
(

αS

π

)2
C̃(2)

ca (z;ε, λ̃ )+O(α3
S) . (3.10)

The limit ε→ 0 in Eq. (3.10) gives the collinear functions in Eqs. (1.1) and (1.3), namely C̃(m)
ca (z;ε =

0, λ̃ ) =C(m)
ca (z) (c = q, q̄,g). The IR finite function G̃ga in Eq. (3.9) has the following perturbative

expansion:

G̃ga(z;αS,ε, λ̃ ) =
αS

π
G̃(1)

ga (z;ε, λ̃ )+
(

αS

π

)2
G̃(2)

ga (z;ε, λ̃ )+O(α3
S) . (3.11)

In the four-dimensional limit ε → 0, G̃ga gives the transverse-momentum resummation function
Gga in Eqs. (1.2) and (1.4), and specifically we have G̃(m)

ga (z;ε = 0, λ̃ ) = G(m)
ga (z). We find the

following results for G(m)
ga (z) at O(α2

S):

G(2)
gg (z) =C2

A

{
− 37

36z
+

31
18
− 13z

12
+

11z2

36
− ln(z)

[
1
z
+

19
12

]
+

1
2

ln2(z)+
1− z

z

[
Li2(z)−

π2

6

]
+CFN f

{
(1− z)3

2z
− 1

4
ln2(z)

}
+CAN f

{
− 17

36z
+

4
9
+

z
12

+
z2

36
− 1

6
ln(z)

}
−h(1)g CA

1− z
z

, (3.12)

G(2)
gq (z) =C2

F

{
−1− z

2
+

5
4

ln(z)− 1
4

ln2(z)− 1− z
2z

[
ln(1− z)+ ln2(1− z)

]}
+CFN f

{
−1− z

3z

[
2
3
+ ln(1− z)

]}
+CACF

{
− 11

18z
+

10
9
− z

2
− ln(z)

[
1
z
+

5
2

]
+

1
2

ln2(z)+
1− z

z

[
5
6

ln(1− z)+
1
2

ln2(1− z)+Li2(z)−
π2

6

]}
−h(1)g CF

1− z
z

, (3.13)

and G(2)
gq̄ (z) = G(2)

gq (z). In the above, h(1)g is a scheme dependent (see Ref. [4] for more details)
coefficient. Our results in Eqs. (3.12) and (3.13) are in full agreement with the literature [5, 6] and
hence, provide a non-trivial check on our theoretical framework and explicit computations.

4. Conclusion

In this talk we have considered the computation of collinear contributions to the transverse
momentum resummation up to O(α2

S). Starting from the factorisation structure of scattering am-
plitudes in the collinear limit, we have introduced differential collinear functions that have a process
independent structure. These collinear functions upon integration over the appropriate observable-
dependent phase space gives the logarithmically-enhanced contributions to the corresponding ob-
servable. Through our formalism we have shown how these collinear functions can be defined
without introducing what is known as rapidity divergences in the literature and presented explicit
results for the azimuthally-correlated contributions to the TMD collinear function at O(α2

S).
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