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An event classification problem in collider physics is a fundamental problem to accelerate searches
for new phenomena in nature. The event classification problem is aimed at discriminating the
signal events of interest from the background events as much as possible. In this study, the transfer
learning technique in deep learning was employed to efficiently address this event classification
problem. In collider physics experiments, there are many types of data analyses that target different
signal events. To ensure the transferability of these data analyses, a deep learning model based on
a graph neural network architecture is proposed in this study. By applying the transfer learning
with this model, we observed that a high accuracy of event classification can be achieved even with
a small amount of data. In particular, a significant improvement was observed when the physics
processes of the events were similar between the source and target datasets of the transfer learning.
This achievement by the transfer learning provides a potential approach for saving computing
resources for future collider experiments.

International Symposium on Grids & Clouds 2022 (ISGC 2022)
21 - 25 March, 2022
Online, Academia Sinica Computing Centre (ASGC), Taipei, Taiwan***

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/



P
o
S
(
I
S
G
C
2
0
2
2
)
0
1
6

Application of transfer learning to event classification in collider physics Tomoe Kishimoto

1. Introduction

The aim of experimental particle physics is to understand the fundamental laws of nature. In
collider physics experiments, a large number of events1 are produced from particle collisions using
high energy accelerators, such as the Large Hadron Collider (LHC) [1]. Therefore, the classification
of events becomes important for data analysis, where interesting signal events are separated from
the background events as much as possible.

Although machine learning (ML), such as boosted decision trees, has a long history in collider
physics [2, 3], deep learning (DL) is also widely used to enhance the performance of event clas-
sification. DL can provide significant discrimination power by utilizing its huge parameter space;
however, a large amount of data is required to maximize its performance. In the field of collider
physics, training data are typically generated using Monte Carlo (MC) simulations based on theories
of signal and background processes. However, MC simulations are computationally expensive. For
instance, LHC experiments are expected to require large computing resources for MC simulations
in the near future [4]. Therefore, maximizing DL performance with a small amount of data is a key
concept to address the scalability and sustainability of future collider physics experiments.

We consider the transfer learning (TL) technique in DL to be a feasible approach to address
these issues. The DL model consisted of a stack of layers with nonlinear functions. The initial
part of the layers is to learn the local features of data, and the subsequent layers learn global
features. This indicates that the knowledge of local features gained while solving one problem
can be transferred to different problems that involve common local features. For example, we can
assume that the knowledge gained in recognizing cars can be used in recognizing trucks. This
is known as the TL technique and it has been successfully applied in the computer vision field,
especially for image classification [5, 6]. In collider physics experiments, there are many data
analyses targeting various signal events, such as Higgs boson measurements and new phenomena
searches. In the present analysis workflow, dedicated DL models for each data analysis are trained
from scratch, that is, random initial values, indicating that a large amount of training data is required
for each data analysis. If TL works effectively for different data analyses, DL models can be trained
using pretrained weight parameters. Consequently, many computing resources for MC simulations
and model training are saved.

In this study, we report that event classification can be performed with high accuracy, even with
a small amount of data, by applying the TL technique. Event classification is typically performed
based on the information of reconstructed particles (objects). The number of objects in the final
state differs depending on the data analysis. Thus, the DL model must work with a variable number
of objects and be insensitive to the ordering of objects to ensure transferability. To overcome these
problems, we propose a DL model based on a graph neural network (GNN) architecture. The details
of the DL model and improvements by TL are discussed below.

The remainder of this paper is organized as follows. Section 2 describes related works.
Section 3 summarizes the datasets used in this study. Section 4 provides details of the proposed
model. Section 5 presents the experimental results. Finally, Section 6 concludes the paper.

1The term “event” corresponds to “image” in the image classification.
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2. Related work

DL has been successfully adapted for event classification in collider physics. A previous study
reported that DL outperformed traditional MLs by discovering powerful features and providing
better discrimination power [7]. As discussed in the previous section, these DL models are trained
from scratch and optimized for each problem. To use a single DL model for closely related
problems, such as event classification at different signal masses, a parameterized neural network for
high energy physics was proposed [8] , which includes physics parameters as inputs. For example,
by including the mass of a signal particle, the single DL model provides improved discrimination
power across different signal masses. In addition, a study related to the transferability of DL models
in different signal events [9] reported that DL provides discriminative power to other signals that
vary kinematically. In contrast to these previous studies, our study has the following novelties:

• A DL model based on the GNN architecture is proposed. This model allows us to examine the
transferability for different event classifications. For example, the proposed model ensures
the transferability between event classification problems with different number of observed
objects. This transferability is not directly covered by the parameterized neural network.

• Fine-tuning is performed using a small amount of data. In this study, we transfer a part of
the weight parameters of the model and update the weight parameters using a given data.
In the event classification problem, this fine-tuning is expected to work effectively to absorb
differences in physics processes between the source and target datasets. To the best of our
knoledge, effectiveness of the fine-tuning is not discussed in any prior works.

3. Datasets

The training data in this study were produced using particle physics simulations: proton-
proton collision events were generated by MadGraph5_aMC@NLO [10] at a center of mass energy
of 13 TeV, with showering and hadronization performed by Pythia8 [11] and detector response
simulated by Delphes [12].

In this study, the dataset used to learn features with a large amount of data is called a source
dataset and datasets used to evaluate the performance of TL with a small amount of data are
called target datasets. The physics processes of the signal and background events in each dataset
are designed to have the same final state particles, making it difficult to discriminate. Table 1
summarizes the physics processes for each dataset and the descriptions are as follows:

• Source dataset: Two-Higgs-Doublet model (2HDM) [13, 14], which introduces additional
Higgs bosons, 𝐻0, 𝐴 and 𝐻±, is used as the signal event. Top pair production (𝑡𝑡) of the
Standard Model (SM) is used as the background event. Figure 1 shows Feynman diagrams
for the signal and background processes. The final state particles are one lepton (ℓ), one
neutrino (𝜈), two 𝑏-quarks (𝑏), and two light-quarks ( 𝑗).

• Target dataset 1: The same 2HDM process is used as the signal event; however, the masses
of the additional Higgs bosons are different from the source dataset, which are heavier than
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Table 1: Summary of physics processes.

Category Bkg. Sig. Signal mass (GeV) Final state # of variables
Source dataset 𝑡𝑡 2𝐻𝐷𝑀 𝑚𝐻 0 , 𝑚𝐻± = 425, 325 ℓ𝜈𝑏𝑏 𝑗 𝑗 5 × 6
Target dataset 1 𝑡𝑡 2𝐻𝐷𝑀 𝑚𝐻 0 , 𝑚𝐻± = 500, 400 ℓ𝜈𝑏𝑏 𝑗 𝑗 5 × 6
Target dataset 2 𝑡𝑡 𝑍 ′ 𝑚𝑍 ′ = 1000 ℓ𝜈𝑏𝑏 𝑗 𝑗 5 × 6
Target dataset 3 𝑡𝑡𝑏𝑏 𝑡𝑡𝐻 Standard model ℓ𝜈𝑏𝑏𝑏𝑏 𝑗 𝑗 5 × 8
Target dataset 4 𝑍𝜈𝜈 𝑔̃𝑔̃ 𝑚𝑔̃ = 607 𝜈(𝜒0

1)𝜈(𝜒
0
1) 𝑗 𝑗 𝑗 𝑗 5 × 5

the source dataset. The background events are the same 𝑡𝑡 process as the source dataset. The
decay chains are the same as the source dataset.

• Target dataset 2: A heavy neutral particle (𝑍 ′) decaying into top quark pair [15, 16] is used
as the signal event. The background events are the same 𝑡𝑡 process as the source dataset. The
decay chains of the top pairs are the same between signal and background events as shown in
Figure 1 (b).

• Target dataset 3: Higgs boson production associated with top pair (𝑡𝑡𝐻) in the SM, where
Higgs boson decays into 𝑏-quark pair, is used as the signal event. Top pair production in
association with two 𝑏-quark (𝑡𝑡𝑏𝑏) is used as the background event. In this dataset, additional
two 𝑏-quarks are observed in the final state compared to the source dataset.

• Target dataset 4: gluino pair production (𝑔̃𝑔̃) in supersymmetry model [17], where a gluino
decays into a neutralino (𝜒0

1) and two light-quarks, is used as the signal events. 𝑍 boson
production in association with four light-quarks, where 𝑍 boson decays into neutrino pair
(𝑍𝜈𝜈), is used as the background event. Thus, the final state particles are two neutralinos
and four light-quarks for the signal events and two neutrinos and four light-quarks for the
background events, respectively.

(a) (b)

Figure 1: Feynman diagrams for (a) 2HDM signal and (b) 𝑡𝑡 background processes in the source dataset.

Neutrinos were reconstructed as a missing transverse momentum (MET) object. 𝑏-quark and
light-quark were reconstructed as 𝑏-jet and light-jet objects, respectively. The four-momenta of
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Table 2: The number of generated MC events.

Category Training data Validation data Test data
Sig. Bkg. Sig. Bkg. Sig. Bkg.

Source dataset 1.0 × 107 1.0 × 107 5.0 × 104 5.0 × 104 5.0 × 104 5.0 × 104

Each target dataset 5.0 × 105 5.0 × 105 5.0 × 104 5.0 × 104 5.0 × 104 5.0 × 104

each object (𝑝T, 𝜂, 𝜙, mass) and object-type were used as input variables in this study2, where the
object type is indicated by a integer. The log transformation was applied to 𝑝T and mass (GeV) to
fit the values withion a reasonable range. 𝜂 = 0 and mass = 0 were assigned to the MET object. The
number of input variables for each dataset is also summarized in Table 1. For example, the source
dataset was 5 (feature variables) × 6 (objects) = 30. Table 2 summarizes the number of generated
MC events for each category. According to the concept of the TL, a large amount of the training
data was prepared for the source dataset, which is a total 2.0 × 107 events and smaller training data
were prepared for each target dataset, which is a total 1.0× 106 events. The training, validation and
test data were used as independent data to evaluate the performance without bias.

4. Proposed deep learning model
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Figure 2: Overview of the proposed DL model.

Figure 2 presents an overview of the proposed DL model. The input data were prepared to
have a graph structure composed of nodes and edges. Each node in the graph corresponds to an
object in this study. Thus, object features: 𝑝T, 𝜂, 𝜙, mass, and object-type are assigned to the node
attribute. Edges are prepared as a fully-connected bidirectional graph, including a self-loop. Edge
attributes are empty in the initial inputs. Thus, the shape of the initial input is 𝑁 × 𝐶, where 𝑁 is
the number of objects and 𝐶 is the number of features.

The model consisted of two parts: a feature and a classifier module. The feature module is
aimed at extracting data features. The output of the feature module was fed into the classifier module
to predict the data class, that is, a signal or background event. A GNN architecture was employed
in the feature module. The GNN allows us to handle variable number of objects and overcome

2Collider physics terminologies are described in Ref. [18].
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Table 3: The number of trainable parameters. “w/o attention mechanism" indicates to use a simple message
passing described in the text, and “w/ attention mechanism" indicates to use the graph attention network.

Model Feature module Classifier module Total
w/o attention mechanism (GNN model) 333,312 514 333,826
w/ attention mechanism (GAT model) 334,848 514 335,362

the ordering problem by using permutation-invariant reduction functions, such as element-wise
sums, means, or maximums. In this study, the message passing paradigm in the GNN consisted of
edge-wise and node-wise computations. In edge-wise computation, a message from each edge is
generated based on the edge attributes and neighboring node attributes. In node-wise computation,
each node attribute is updated by aggregating its incoming messages using the reduction function.
As a simple message passing of the GNN, we implemented a node-wise computation that averages
the incoming messages, which are the attributes of the source nodes. We also examined the graph
attention network (GAT) [19] based on the attention mechanism [20], which learns the weights
of node relations as edge attributes. For instance, if the relation between 𝑏-quarks from Higgs
boson is more important than other relations, the attention weight becomes a large value. Then, the
corresponding messages are weighted by these values in message passing. The multi-head technique
in the attention mechanism is also employed to enhance the performance. The attention mechanism
is expected to extract features effectively and also is useful for visualizing the importance of objects.

The feature module consists of a stack of blocks, as illustrated in Figure 2, where there are
6 blocks. Each block consists of a GNN layer, batch normalization (BN) layer [21], and ReLU
activation function. In the final layer of the feature module, a global feature is obtained by averaging
the node attributes. The classifier module consisted of only one fully connected layer. Table 3
summarizes the number of trainable parameters with and without the attention mechanism. The
attention mechanism introduces additional trainable parameters compared with the simple message
passing in this study. The models with and without the attention mechanism are referred to as GNN
model and GAT model, respectively.

5. Experiments

Our codes for this experiment were implemented using PyTorch [22] and DGL [23] and are
available [24]. NVIDIA Tesla A100 was used for all executions.

5.1 Training of source task

Table 4 summarizes the hyperparameters of training for the source dataset. The training was
performed for up to 100 epochs and the best epoch for the validation data was used as the final
weight parameters. The hyperparameters of the model architecture, such as the number of hidden
features in the GNN layer were determined by a grid search for several points. The numbers in
brackets in Table 4 indicate the searched parameter points and the bold numbers are selected as the
final parameters.

Figure 3 shows the accuracy of event classification during training, which confirm that the
training and validation data exhibit similar performance. Thus, the overtraining is suppressed
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Table 4: The hyperparameters of the source dataset training. The learning rate is decreased by cosine
annealing algorithm [25]. In the model architecture, the bold numbers are selected by grid search. The
number of hidden features is the length of each node attribute in the GNN layer. All blocks have the same
number of hidden features and multi-head.

# of epoch 100
Batch size 2,048
Loss function Cross entropy loss
Optimizer SGD algorithm

learning rate 0.01 - 0.0001
momentum 0.9
weight_decay 0.00005

Model architecture
# of blocks [5, 6, 7, 8]
# of hidden features [128, 256, 512, 1024]
# of multi-head [2, 4, 8, 16]

owing to the large amount of data. The GAT model exhibits slightly better performance than the
GNN model. This may explain why the attention mechanism works effectively for extracting data
features. The observed accuracies for the test data are 0.810 and 0.819 for the GNN and GAT
models, respectively. The training throughput of one GPU for the GNN and GAT models was
approximately 66 batches and 38 batches per second.

Figure 3: Accuracies over epochs in the source dataset.

Figure 4 shows the attention weights of the GAT model after the training. The values are
averaged over all events in the test data and also the multi-heads. It can be seen that the nodes
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corresponding to the 𝑏-jets show higher values. In the signal process, the 𝑏-quarks originate from
Higgs boson. Thus, the existence of Higgs boson is an important discriminant to separate the signal
events from the background events. The observation that the 𝑏-jets show large weights is consistent
with our analysis knowledge.

Figure 4: Average of attention weights in the source dataset. The test data is used. Y-axis and X-axis are
the source and target nodes in the message-passing. The 𝑏-jets and light-jets are ordered by 𝑝T.

5.2 Training of target tasks

To evaluate transferability, three types of training were defined for the target datasets:

• No TL: No transfer learning is applied to the target datasets. All weight parameters of the
model are trained from scratch using a given target dataset.

• TL with fixed weights: The weight parameters of the feature module are transferred from
the source model, but the transferred weight parameters are fixed during the training using a
given target dataset. The weight parameters of the classifier module are trained from scratch.

• TL with fine-tuning: The weight parameters of the feature module are transferred from the
source model, and the transferred weight parameters are updated during the training using a
given target dataset. The weight parameters of the classifier module are trained from scratch.

In all three trainings, the classifier module is always trained from scratch because we assume that
common knowledge is extracted by the feature module and the classifier module highly depends on
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the target domains. The hyperparameters of the trainings were the same as those of the source task;
however the batch size was decreased to 256 to increase the parameter update frequency for small
datasets. To evaluate the performance in terms of the number of target events, cases of 103, 104,
105, and 106 events were examined, which were quite small compared to the source dataset.

5.3 Results

Figure 5 shows the accuracies for the target dataset training with the cases of 104 and 106 target
events. Target dataset 1 is used in this example, which has a very similar topology to the source
dataset because only the masses of the signal particles are different. If we focus on Figures 5 (a) and
(b) for the case of relatively small data, significant improvements are observed through TL, which
are approximately 20% improvements in accuracy. In such small data, the TL with fine-tuning
(green lines) still causes over-training, and the TL with fixed weights (blue lines) shows better
performance in these examples. However, if sufficient data are available, the TL with fine-tuning
shows a similar or better performance compared to the fixed weights, as confirmed in Figures 5 (c)
and (d).

Figure 6 summarizes the observed accuracies of the test data in terms of the number of target
events for all the target datasets. TL with fine-tuning (solid lines) provides improvements compared
with no TL (dotted lines) for all datasets. To evaluate the relative improvements by TL, error
reduction was defined as follows:

Error reduction = 1 − ErrorTL

ErrorNo TL , Error = 1 − Accuracy, (1)

where the positive value of the error reduction indicates improvements through TL, whereas a
negative value indicates degradation through TL. Figure 7 summarizes the error reductions for all
the target datasets. As described above, significant error reductions by TL were observed in the
target dataset of 1. The error reductions in target dataset 2 are also visible. This is probably because
the same background process as of the source dataset, 𝑡𝑡, was used in this target dataset. However,
the error reductions decrease if the topologies are different from the source dataset, such as the
target datasets 3 and 4. These behaviors are consistent with our initial expectation that TL works
effectively if common knowledge exists between the source and target domains. However, we still
observe more than a 10% error reduction in target datasets 3 and 4 when the target data size is very
small. The TL with fine-tuning (dashed lines) shows similar performance to the No TL when the
number of events is sufficient, although the TL with fixed weights (solid lines) shows a degraded
performance.

Figure 8 shows the attention weights of the GAT model in target dataset 4 before and after
performing fine-tuning as an example. The definition of average values is the same as that shown
in Figure 4. The light-jets show higher values before fine-tuning, and the MET shows higher values
after fine-tuning. This indicates that fine-tuning increases the importance of MET in this dataset. In
dataset 4, the neutralinos of the signal events were observed as the MET object. Thus, this behavior
is reasonable based on our analysis knowledge.

9
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(a) GNN model, 104 target events (b) GAT model, 104 target events

(c) GNN model, 106 target events (d) GAT model, 106 target events

Figure 5: Accuracies for different models and the number of target events. The target dataset 1 is used.
“No TL" indicates that no transfer learning is applied. TL Fixed and TL Tuned indicate the transfer leaning
is applied with the fixed weight parameters and fine-tuning, respectively.

6. Conclusion

In this study, the transferability of event classification in collider physics is discussed. We
proposed a DL model based on a GNN architecture to handle a variable number of objects and
overcome the ordering problem. We confirmed that high accuracy of the event classifications was
achieved even with a small amount of data by applying the transfer learning. If the topologies
are different between the source and target datasets, fine-tuning is very effective in absorbing the
differences, which is confirmed by visualizing the attentions weights. If a large amount of data is
available, the performance converges with and without the transfer learning.

In this study, the source dataset consisted of only two specific processes: 2HDM and 𝑡𝑡. To
improve the generalization of transferability, including more physics processes in the source dataset
is a feasible approach. A deeper understanding of the behavior of attention weights will improve
the clarity of transferability, which is a subject for future research.
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(a) Target dataset 1 (b) Target dataset 2

(c) Target dataset 3 (d) Target dataset 4

Figure 6: The accuracies for different datasets. “No TL” indicates that no transfer learning is applied.
“Fixed" and “Tuned" indicate the transfer leaning with the fixed weight parameters and fine-tuning, respec-
tively. Each point obtained using the test data and shows average value of three runs with one standard
deviation band.
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(a) Target dataset 1 (b) Target dataset 2

(c) Target dataset 3 (d) Target dataset 4

Figure 7: The error reductions for different datasets. “Fixed" and “Tuned" indicate the transfer learning
with the fixed weight parameters and fine-tuning, respectively. Each point obtained is using the test data, and
shows average value of three runs with one standard deviation band.
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(a) Before the fine-tuning

(b) After the fine-tuning

Figure 8: Average of attention weights in the target dataset 4. The light-jets are ordered by 𝑝T in these
figures. (a) is the figure before performing the fine-tuning and (b) is the figure after performing the fine-tuning
using 106 target events.
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