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To calculate the parton distribution functions (PDF) from first principles using lattice gauge
theories it is convenient to consider the Ioffe-time distribution defined through gauge-invariant
bi-local operators with spacelike separation. Lattice calculations provide values for a limited
range of the distance separating the bi-local operators. In order to perform the Fourier transform
and obtain the pseudo- and the quasi-PDFs, it is then necessary to extrapolate the large-distance
behavior.
I will discuss the formalism one may use to study the behavior of the Ioffe-time distribution at
large distances and show that the pseudo-PDF and quasi-PDF are very different in this regime.
Using light-ray operators, I will also show that the higher twist corrections of the quasi-PDF come
in not as inverse powers of 𝑃 but as inverse powers of 𝑥𝐵𝑃.
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1. Introduction

The Euclidean formulation of the lattice gauge theory does not allow direct calculations of
the parton distribution functions (PDF). So far, the most successful procedure to overcome this
difficulty is represented by the study of equal-time correlators in coordinate space called Ioffe-
time distributions. Two different Fourier transforms of the Ioffe-time distributions lead to the
quasi-PDF [1] and the pseudo-PDF [2].

As originally suggested in ref. [1], to extract the PDF from the quasi-PDF one has to take the
infinite-momentum limit 𝑃 → ∞with the higher twist corrections are expected to come in as inverse
powers of the longitudinal momentum. Using the pseudo-PDFs, instead, the PDFs are extracted in
the short (longitudinal) distance limit [2]. Since lattice calculations provide values of the Ioffe-time
distributions only for a limited range of the distance separating the bi-local operators, in order to
perform the Fourier transform for the quasi-PDF or the pseudo-PDF, one has to extrapolate the
large-distance behavior [3].

For the first time, in Ref [4], we obtained the behavior of the gluon Ioffe-time distribution at
large longitudinal distances as well as the low-𝑥𝐵 behavior of the quasi-PDF and pseudo-PDF. Using
the light-ray operators, obtained as an analytic continuation of local twist-two operators [6, 7], we
extracted also the leading twist (LT) and next-to-leading twist (NLT) contributions.

2. Pseudo-PDF and quasi-PDF from Ioffe-time distribution

The pseudo-PDF and the quasi-PDF are obtained from two different Fourier transforms of
the Ioffe-time distributions. As we will see, these differences will lead to two completely different
behaviors at small-x𝐵. The gluon bi-local operator, 𝑀𝜇𝛼;𝜆𝛽 ≡ ⟨𝑃 |𝐺𝜇𝛼 (𝑧) [𝑧, 0]𝐺𝜆𝛽 (0) |𝑃⟩, defining
the Ioffe-time distribution, can be decomposed in terms of six tensor structures proportional to
invariant amplitudes of the type M(𝑧2, 𝑃2), using the proton momentum 𝑃𝜇, the coordinate 𝑧𝜇 and
the metric tensor 𝑔𝜇𝜈 [8]. The light-cone gluon distribution is determined from 𝑔

𝛼𝛽
⊥ 𝑀+𝛼;+𝛽 (𝑧+, 𝑃)

with 𝑧 taken on the light-cone and proportional to the invariant amplitude

𝑔
𝛼𝛽
⊥ 𝑀+𝛼;+𝛽 (𝑧+, 𝑃) = 2(𝑃−)2M𝑝𝑝 (𝑧 · 𝑝, 0) . (1)

As usual, we define the light-cone coordinates 𝑥± = 𝑥0±𝑥3
√

2
, and light-cone vectors 𝑛𝜇 and 𝑛′𝜇 such

that 𝑛 · 𝑛′ = 1, 𝑛 · 𝑥 = 𝑥− and 𝑛′ · 𝑥 = 𝑥+.
The relation between the gluon PDF 𝐷𝑔 (𝑥𝐵) and the amplitude M𝑝𝑝 is given by

M𝑝𝑝 (𝑧 ·𝑃, 0) =
1
2

∫ 1

−1
𝑑𝑥𝐵 𝑒𝑖𝑧 ·𝑃 𝑥𝐵 𝑥𝐵𝐷𝑔 (𝑥𝐵) . (2)

The gluon Ioffe-time distribution M𝑝𝑝 (𝑧 · 𝑃, 𝑧2), with 𝑧 ·𝑃 the Ioffe-time parameter is given in
terms of the zeroth and transverse components as

𝑀0𝑖;𝑖0 + 𝑀 𝑗𝑖;𝑖 𝑗 = 2𝑃2
0M𝑝𝑝 . (3)

Since at high energy (Regge) limit the transverse components are suppressed while the 0th and 3rd
components cannot be distinguished, calculating the behavior of the left-hand-side (LHS) of (1), will
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Figure 1: Diagrammatic representation of the HE-OPE applied to the gluon non-local operator with “quasi-
PDF frame”.

be equivalent, at high-energy, to calculating the behavior of RHS of (3). The momentum-density
pseudo-PDF is defined as the Fourier transform with respect to 𝑧 · 𝑃, that is a Fourier transform
with respect to 𝑃 keeping its orientation fixed. So, we define the gluon pseudo-PDF as

𝐺p(𝑥𝐵, 𝑧2) =
∫

𝑑𝜚

2𝜋
𝑒−𝑖 𝜚 𝑥𝐵M𝑝𝑝 (𝜚, 𝑧2) , (4)

where we defined 𝜚 ≡ 𝑧 · 𝑃. The momentum-density quasi-PDF is defined, instead, as the Fourier
transform with respect to 𝑧𝜇 keeping its orientation fixed. Let us define the vector 𝜉𝜇 = 𝑧𝜇

|𝑧 | , the real
parameter 𝜍 such that −𝑧2 = 𝜍2 > 0, and 𝑃𝜉 = 𝑃 · 𝜉. The quasi-PDF is then defined as

𝐺𝑞 (𝑥𝐵, 𝑃𝜉 ) = 𝑃𝜉

∫
𝑑𝜍

2𝜋
𝑒−𝑖 𝜍 𝑃𝜉 𝑥𝐵M𝑝𝑝 (𝜍𝑃𝜉 , 𝜍

2) . (5)

We will calculate the large distance (large 𝜚) behavior of the Ioffe-time distributionM𝑝𝑝 (𝜚, 𝑧2),
and the low-𝑥𝐵 behavior of the gluon pseudo-PDF (4), and of the gluon quasi-PDF (5).

3. Low-𝑥𝐵 behavior from high-energy OPE

To get the low-𝑥𝐵 behavior of the gluon pseudo- and quasi-PDF we should first consider the
behavior of the Ioffe-time distribution for large values of the 𝜚 parameter using the high-energy
operator product expansion (HE-OPE) (see [9] for review).

The Ioffe-time gluon distribution defined in the previous section is

⟨𝑃 |𝐺𝑎𝑖− (𝑧) [𝑧, 0]𝐺𝑏
𝑖

− (0) |𝑃⟩ = 2(𝑃−)2M𝑝𝑝 (𝜚, 𝑧2) . (6)

The HE-OPE procedure requires that one calculates the coefficient function (Impact Factor) first,
and then the resummation of the relevant logarithms is obtained through the evolution with respect
to the rapidity parameter of the resulting operators. The aforementioned procedure is schematically
given in Fig 1 and the result in the saddle point approximation is [4]

M𝑝𝑝 (𝜚, 𝑧2) ≃ 3𝑁2
𝑐

128 𝜚

𝑄𝑠 𝜎0
|𝑧 |

(
2 𝜚2

𝑧2𝑀2
𝑁

+ 𝑖𝜖

) �̄�𝑠2 ln 2
𝑒

−
ln2 𝑄𝑠 |𝑧 |

2

7𝜁 (3) �̄�𝑠 ln

(
2 𝜚2

𝑧2𝑀2
𝑁

+𝑖𝜖
)

√︂
7𝜁 (3)�̄�𝑠 ln

(
2 𝜚2

𝑧2𝑀2
𝑁

+ 𝑖𝜖

) . (7)

3



P
o
S
(
I
C
H
E
P
2
0
2
2
)
8
2
6

Pseudo- and quasi-PDFs in the BFKL approximation Giovanni Antonio Chirilli

In eq. (7), the first thing we should notice is that the logarithms resummed by BFKL are
�̄�𝑠 ln

( √
2𝜚

|𝑧 |𝑀𝑀

)
. The second is that the Ioffe-time 𝜚 acts like a rapidity parameter. We evolve

the distribution in 𝜚 as long as �̄�𝑠 ln
( √

2𝜚
|𝑧 |𝑀𝑀

)
is of order 1, i.e. we start the evolution at large values

of 𝜚 and end at smaller ones. The dipole at the smallest value of 𝜚 is evaluated in the GBW model.
We stopped the evolution at 𝜚 = 10 (see figure 1).

Considering the case 0 <
𝑄2

𝑠 |𝑧 |2
4 < 1, which corresponds to the typical DIS region, taking the

first two leading residues, we obtain the twist expansion as [4]

M𝑝𝑝 (𝜚, 𝑧2) = 𝑁2
𝑐

8𝜋2�̄�𝑠

𝑄2
𝑠𝜎0

𝜚

©«
4�̄�𝑠

���ln 𝑄𝑠 |𝑧 |
2

���
ln

(
2 𝜚2

𝑧2𝑀2
𝑁

+ 𝑖𝜖

) ª®®¬
1
2

𝐼1(𝑡 )
(
1 +

𝑄2
𝑠 |𝑧 |2
5

)
+𝑂

(
𝑄4

𝑠 |𝑧 |4
16

)
, (8)

with 𝑡 =

[
4�̄�𝑠

���ln 𝑄𝑠 |𝑧 |
2

��� ln(
2 𝜚2

𝑧2𝑀2
𝑁

+ 𝑖𝜖

)] 1
2
. Results (7) and (8) are plotted in Fig. 2.
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Figure 2: In the left panel, the orange curve is the numerical evaluation of the real part of eq. (7), the green
dashed curve is the real part of the LT term only, while the red dashed one is the real part of LT+NLT result
(8). In the right panel, we plot the imaginary parts.

3.1 Gluon pseudo- and quasi-PDF with BFKL resummation

The pseudo-PDF is obtained from eq. (4) performing the Fourier transform with respect to 𝜚.
In the saddle point approximation, the result is

𝐺p(𝑥𝐵, 𝑧2) ≃ −𝑖 3𝑁2
𝑐

128𝜋
𝑄𝑠𝜎0
|𝑧 |

Γ(�̄�𝑠4 ln 2) sin( 𝜋2 �̄�𝑠4 ln 2)√︂
7𝜁 (3)�̄�𝑠 ln

(
2

𝑥2
𝐵
𝑧2𝑀2

𝑁

+ 𝑖𝜖

) sign(𝑥𝐵)

× exp


− ln2 𝑄𝑠 |𝑧 |

2

7𝜁 (3)�̄�𝑠 ln
(

2
𝑥2
𝐵
𝑧2𝑀2

𝑁

+ 𝑖𝜖

) 
(

2
𝑥2
𝐵
𝑧2𝑀2

𝑁

+ 𝑖𝜖

) �̄�𝑠2 ln 2

. (9)

In result (9) one can immediately observe the typical low-𝑥𝐵 resummation of logarithms �̄�𝑠 ln 1/𝑥𝐵
with �̄�𝑠2 ln 2 the famous Pomeron intercept. Similarly, we can perform the Fourier transform (4) in
the leading and next-to-leading twist approximation.

𝐺p(𝑥𝐵, 𝑧2) =
𝑁2
𝑐𝑄

2
𝑠𝜎0

16𝜋3�̄�𝑠

(
1 +𝑄2

𝑠 |𝑧 |2/5
)
𝐼0(ℎ) +𝑂

(
𝑄4

𝑠 |𝑧 |4/16
)
, (10)
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Figure 3: In the left panel we plot the pseudo-PDF with BFKL resummation (orange curve), and the LT
(green dashed curve) and LT+NLT (red dashed curve) of the pseudo-PDF result; In the right panel, we plot
quasi-PDF with BFKL resummation (real part), the LT, and the LT+NLT (real part). The curves are plotted
in the range 𝑥𝐵 ∈ [0.01, 0.1] with 𝑃𝜉 = 4 GeV. The value of 𝑥𝐵 is between 0.1 to 0.01 in both plots.

with ℎ =
[
2�̄�𝑠

��ln 4/(|𝑧 |2𝑄2
𝑠)

�� ln 2/(𝑥2
𝐵
|𝑧2 |𝑀2

𝑁
)
] 1

2 , and 𝐼0 the modified Bessel function. In Fig. 3,
we plot the gluon pseudo-PDF with the BFKL resummation eq. (9) (orange curve), and the LT term
and the LT plus NLT (green dashed and red dashed curve respectively). We observe that the BFKL
resummation result agrees with the LT and LT+NLT result in the region of moderate 𝑥𝐵. When we
move into the low-𝑥𝐵 region, we notice a strong disagreement which confirms the necessity of a
ln 1

𝑥𝐵
resummation represented by the BFKL equation [10, 11].

For the quasi-PDF case, we need to perform a Fourier transform with respect to a different
parameter. The quasi-PDF is defined as the Fourier transform of the coordinate-space gluon
distributions keeping, this time, the orientation of the vector 𝑧𝜇 fixed.

In the high-energy limit, where 𝑥+ → ∞ and 𝑥− → 0, we can not distinguish between the
zeroth and the third component. We can then rewrite 𝐿𝑃− = 𝑧 · 𝑃 = 𝜍𝑃𝜉 with 𝑃𝜉 ≡ 𝑃 · 𝜉 = 𝑃−

because the 𝜉𝜇 vector, in the limit we are considering, selects the minus component of the 𝑃𝜇 vector.
Moreover, in coordinate space, in the high-energy limit, every field depends only on 𝑥+ and 𝑥⊥, so,
to restore the 𝑥− components we make the substitution (𝑥 − 𝑦)2

⊥ = Δ2
⊥ → −𝑧2 = 𝜍2. So, using

the definition of the gluon quasi-PDF eq. (5), performing the integration over 𝜍 (recall that we are
using 𝛾 = 1

2 + 𝑖𝜈) and then taking the saddle point approximation for the integration over 𝜈, we get

𝐺q(𝑥𝐵, 𝑃𝜉 ) ≃ −3𝑁2
𝑐

256
𝑄𝑠𝜎0𝑃𝜉 |𝑥𝐵 |

(
−

2𝑃2
𝜉

𝑀2
𝑁

+ 𝑖𝜖

) �̄�𝑠2 ln 2
𝑒

−
ln2 𝑄𝑠

2𝑃𝜉 |𝑥𝐵 |

7�̄�𝑠 𝜁 (3) ln©«−
2𝑃2

𝜉

𝑀2
𝑁

+𝑖𝜖 ª®¬√︄
7𝜁 (3)�̄�𝑠 ln

(
−

2𝑃2
𝜉

𝑀2
𝑁

+ 𝑖𝜖

) . (11)

We notice that, in the gluon quasi-PDF case, the usual exponentiation of the Pomeron intercept (the
LO BFKL eigenvalues ℵ(𝛾)), which indicates the resummation of large logarithms of 1

𝑥𝐵
, is absent.

To obtain the leading and next-to-leading twist gluon quasi-PDF we have to perform the Fourier à
la quasi-PDF and make the inverse Mellin transform at the end. So, using the quasi-PDF variables
𝜍 and 𝑃𝜉 and performing the integration over 𝜍 we get

5
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𝐺q(𝑥𝐵, 𝑃𝜉 ) = −
𝑁2
𝑐 𝑄

2
𝑠 𝜎0

16�̄�2
𝑠𝜋

3
1

2𝜋𝑖

∫ 1+𝑖∞

1−𝑖∞
𝑑𝜔

(
−

2𝑃2
𝜉

𝑀2
𝑁

+ 𝑖𝜖

)𝜔
2

(
−

4𝑃2
𝜉
𝑥2
𝐵

𝑄2
𝑠

+ 𝑖𝜖

)�̄�𝑠
𝜔

×
(
𝜔 +

2�̄�𝑠𝑄
2
𝑠

5𝑃2
𝜉
𝑥2
𝐵

+𝑂

(
�̄�𝑠

𝜔

))
. (12)

where we have used the approximation �̄�𝑠 ≪ 𝜔 ≪ 1. Equation (12) is the gluon quasi-PDF up
to the next-to-leading twist contribution. What one should notice in the result (12) is the strong
enhancement of the NLT term with respect to the LT term due to the 1

𝑃2
𝜉
𝑥2
𝐵

factor which increases
as 𝑥𝐵 decreases.

4. Conclusions

The main conclusion is that the pseudo-PDF and the quasi-PDF have very different behavior
at low-𝑥𝐵. The physical origin of the difference between the two distributions is due to the two
different Fourier transforms under which they are defined. Indeed, in the pseudo-PDF case, the
scale is the resolution, i.e. the square of the length of the gauge link separating the bi-local operator.
On the other hand, in the quasi-PDF case, the scale is the energy, i.e. the momentum of the hadronic
target (the nucleon) projected along the direction of the gauge link. Therefore, if on one hand, the
pseudo-PDF has the typical behavior of the gluon distribution at low-𝑥𝐵, on the other hand, the
quasi-PDF has a rather unusual low-𝑥𝐵 behavior (see figure 3).
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