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The muon anomaly, 𝑎𝜇 = (𝑔𝜇 − 2)/2, is a low-energy observable which can be both measured
and computed to high precision, making it a sensitive test of the Standard Model (SM) and a
probe for new physics. The current discrepancy between the experimental value and the Standard
Model calculation from the Muon 𝑔 − 2 Theory Initiative is 𝑎

𝑒𝑥𝑝
𝜇 − 𝑎𝑆𝑀𝜇 = (251 ± 59) · 10−11,

with a significance of 4.2𝜎. The Fermilab E989 experiment aims, with the full statistical power,
to improve by a factor of four the precision of the measurement. In April 2021 the collaboration
published the first measurement, based on the first year of data taking. This paper will present the
status of the measurement of the anomalous muon spin precession frequency, 𝜔𝑎, performed on
the datasets collected during Run-2 and Run-3 (2019 and 2020 campaigns), with a preliminary
projection of the systematic uncertainties.
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Measurement of 𝜔𝑎 in the Muon 𝑔 − 2 experiment at Fermilab Lorenzo Cotrozzi

1. The magnetic moment of the muon
The intrinsic magnetic moment of a charged particle with spin is defined by the following relation:

®𝜇 = 𝑔
𝑒

2𝑚
®𝑆, (1)

where 𝑒 is the particle charge, 𝑚 its mass, ®𝑆 its spin vector and 𝑔 the so-called g-factor or Landè
factor, a dimensionless parameter. The magnetic moment ®𝜇 gives us a measure of the torque
®𝜏 = ®𝜇 × ®𝐵 and the energy 𝑈 = − ®𝜇 · ®𝐵 that a charged particle experiences in a magnetic field.
Dirac’s equation predicts the value 𝑔 = 2 for charged particles with 1

2 -spin such as electrons and
muons, but deviations from 2, first measured by Kusch and Foley in 1948 [1], arise due to radiative
corrections in the Standard Model (SM). We can define the magnetic anomaly of a lepton ℓ as:

𝑎ℓ =
𝑔ℓ − 2

2
, ℓ = 𝑒, 𝜇, 𝜏. (2)

Figure 1: The Standard Model value recom-
mended by the Muon 𝑔 − 2 Theory Initiative
(green band) [6] is compared to the experimental
average [5] and to the evaluation by BMW col-
laboration using lattice QCD (grey band) [4].

The anomaly can be decomposed into contributions
from different interactions: 𝑎𝜇 = 𝑎

QED
𝜇 + 𝑎Weak

𝜇 +
𝑎

QCD
𝜇 . The dominant one is the 1-loop quantum elec-

trodynamics (QED) correction to 𝑎𝜇, computed by
Schwinger in 1948 [2]: 𝑎𝑒 = 𝛼

2𝜋 ≃ 0.00116, where𝛼
is the fine structure constant. Schwinger’s prediction
was in agreement with Kusch and Foley’s results.
The quantum chromodynamics (QCD) contribution
to 𝑎𝜇 amounts to ∼ 60 parts per million (ppm) and
carries the largest uncertainty on the muon magnetic
anomaly. The leading term comes from Hadron Vac-
uum Polarization (HVP) diagrams, where the energy
scale is of order of the muon mass, well below the
region where QCD can be studied perturbatively: a
dispersion relation approach is used to evaluate the
contribution, using the total experimental cross sec-
tion 𝜎𝑡𝑜𝑡 (𝑒+ 𝑒− → ℎ𝑎𝑑𝑟𝑜𝑛𝑠) [3]. Lattice QCD can
also be used to determine the HVP contribution to 𝑎𝜇 using an ab-initio calculation. In 2021,
the BMW collaboration presented a prediction of 𝑎𝐻𝑉𝑃

𝜇 which was in tension with the predic-
tion from the dispersion approach [4]. Figure 1 presents the tension between the experimental
average [5] and the value recommended by the 𝑔 − 2 Theory Initiative [6], which amounts to
𝑎
𝑒𝑥𝑝
𝜇 − 𝑎𝑆𝑀𝜇 = (251 ± 59) · 10−11, and the tension between the two methods (dispersion approach

and Lattice QCD) for predicting the hadronic contribution to 𝑎𝜇.

2. Measurement principle of the 𝒈 − 2 experiment at Fermilab
When a charged particle with spin is placed in an uniform external magnetic field, it will follow a
circular path because of the Lorentz force, with cyclotron frequency 𝜔𝐶 . Its spin will also precess
around the direction of the magnetic field, with frequency 𝜔𝑆 . We define the anomalous precession
frequency 𝜔𝑎 as follows:

®𝜔𝑎 = ®𝜔𝑆 − ®𝜔𝐶 = − 𝑒

𝑚

[
𝑎𝜇 ®𝐵 − 𝑎𝜇

(
𝛾

𝛾 + 1

) (
®𝛽 · ®𝐵

)
®𝛽 −

(
𝑎𝜇 − 1

𝛾2 − 1

) ®𝛽 × ®𝐸
𝑐

]
. (3)
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In the 𝑔 − 2 experiment, muons are stored in a 1.45 T magnetic field and electrostatic quadrupole
(ESQ) plates provide weak focusing for vertical confinement. Ideally, the second term in Eq. (3)
vanishes for muons that travel orthogonally to the magnetic field, ®𝛽· ®𝐵 = 0, and the third term vanishes
for muons with the “magic momentum” 𝑝𝜇 ≃ 3.09 GeV/c, so that 𝛾 =

√︃
1 + 1

𝑎𝜇
≃ 29.3. Corrections

introduced by these terms are described in Ref. [7]. In this configuration, the expression for the
anomalous precession frequency becomes 𝜔𝑎 = 𝑎𝜇

(
𝑒
𝑚

)
𝐵 ≃ 1.43 rad/µs, whereas the cyclotron

frequency is 𝜔𝐶 ≃ 42 rad/µs.
The magnetic field can be expressed by means of the Larmor precession frequency of free protons,
via ℏ𝜔𝑝 = 2𝜇𝑝 | ®𝐵|, so that 𝑎𝜇 =

𝜔𝑎

𝜔𝑝

𝜇𝑝

𝜇𝑒

𝑚𝜇

𝑚𝑒

𝑔𝑒
2 . In this paper we will focus on the measurement of

𝜔𝑎, which can be fitted from the time distribution of decay positrons detected by calorimeters. The
determination of 𝜔𝑝 is described in Ref. [8].

Figure 2: Left: Diagram of muon decay in the center-of-mass frame. Right: Energy spectrum of emitted
positron in 𝑔 − 2 laboratory frame, which changes as a function of the anomalous precession phase.

Due to parity violation in the muon weak decay, high energy positrons are emitted preferentially
in the muon’s spin direction in the center-of-mass frame (Figure 2, left). As a consequence, in the
lab frame the energy spectrum of emitted positrons has a different shape depending on the angle
between muon spin and muon momentum, i.e. the anomalous precession phase (Figure 2, right).
If we take the integral of the spectrum above a fixed threshold, which corresponds to counting all
positrons above a certain energy, we will find a distribution that is modulated by the 𝜔𝑎 frequency,
described - in the ideal case - by Eq. (4):

𝑁 (𝑡) = 𝑁0𝑒
−𝑡/𝛾𝜏 [1 + 𝐴0 cos (𝜔𝑎𝑡 + 𝜙𝑎)] , (4)

where 𝛾𝜏 is the muon lifetime in the lab frame, ∼ 64.4 µs. The optimal threshold that minimizes
the statistical uncertainty on 𝜔𝑎 is 1.7 GeV [9].

3. Positron detection and reconstruction
Positrons that are emitted from muon decay have a smaller orbit radius than the muon beam, thus
they curl towards the center of the ring where they are detected (Figure 3, right). There are 24
electromagnetic calorimeters placed around the inner radius of the storage ring, which measure the
energies and arrival times of incident positrons. Each segmented calorimeter features a 6×9 matrix
of PbF2 (lead fluoride) crystals, with size 2.5 × 2.5 × 14 cm3, transparent to visible light. Each
crystal absorbs the energy of incoming positrons by generating an electromagnetic shower, which is
contained thanks to ∼ 15𝑋0 of crystal length and a Molière radius of 1.8 cm. The generated charged
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particles travel faster than light in the crystal (refractive index 𝑛 ≃ 1.8), so they generate Cherenkov
photons. Each crystal is coupled to a silicon photomultiplier (SiPM), shown in Figure 3 (left),
which responds to Cherenkov photons with electrical current; this current is then converted into
voltage signal by a custom electronic board, recorded by waveform digitizers and stored for offline
analysis. A laser calibration system sends simultaneous pulses onto each of the 1296 crystals, to
monitor the SiPM gains at the level of 0.04% during the 700 µs window in which muons are stored,
and also on the timescales of days and months to correct for long-term effects, such as temperature
changes [10].

Figure 3: Left: Picture of PbF2 crystals during calorimeter assembly, each coupled to a SiPM board (green).
Right: Trajectory of emitted electron from muon decay, detected by the calorimeter.

Figure 4: Left: Trace of a positron hitting a crystal, fitted with a predetermined template to obtain the time
and deposited energy of the event. Right: Energy spectrum of clusters before pileup correction (blue) and
absolute value of the correction (red), which would be positive until ∼ 2.38 GeV and negative after that value.

To reconstruct the energy and arrival time of detected positrons, we perform a template fit on the
waveforms of each crystal hit, as shown in the example in Figure 4 (left). We then reassemble all
of the crystal hits to reconstruct the events and fill a two-dimensional histograms, in energy and
time. When two or more positrons hit the same calorimeter very close in time, the reconstruction
algorithm is not always able to separate the two events and the incident particles are reconstructed
as a single hit. This is the pileup effect and it introduces a systematic bias in the 𝜔𝑎 analysis because
it distorts the measured energy and time spectra in a time-dependent way: the rate of double-events
is the square of the rate of detected positrons, so it has a lifetime of ∼ 32 µs. By studying the
time distribution of clusters, we estimate the number of double and triple pileup events that need
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to be subtracted, as well as the number of single events that need to be added: we apply the pileup
correction to all energy and time bins in our histograms. Figure 4 (right) shows the energy spectrum
of positrons before pileup subtraction, where values above the maximum physical energy of 3.1 GeV
are present, and the absolute value of the applied correction, which reduces the component above
3.1 GeV. The production workflow from stored raw data to positron events is described in Ref. [11].

4. Precession frequency analysis: fit to “wiggle plots”
From the pileup-corrected energy and time distribution of the positrons, there are different methods
to build the histograms used to extract the anomalous precession frequency 𝜔𝑎: this paper will
focus on the “Threshold method” (T-Method) which was commonly used amongst most analysis
groups. The time distribution of detected positrons above the 1.7 GeV threshold is shown in the
upper plot of Figure 5 (left), and it is called “wiggle plot” due to its shape. In principle, we can
perform a very simple fit with the 5 parameters of Equation (4): 𝑁0, 𝛾𝜏, 𝐴0, 𝜔𝑎 and 𝜙𝑎. Figure 5
(left) shows the fit to data and the residuals: an oscillating term is present in the residuals, mostly
due to beam dynamics effects which must be accounted for to avoid systematic biases to 𝜔𝑎. If we
take the Fast Fourier Transform (FFT) of the residuals we obtain the red dashed curve in Figure 5
(right) where the peaks are all of the frequencies that appear in the residuals.

Figure 5: Left: 5-parameter fit to positron time distribution (upper) and fit residuals (lower). Right: FFT of
residuals in the case of 5-paremeter function (dashed red) or complete fit function in Run-1 (solid black).

The dominant frequency is due to the “Coherent Betatron Oscillation” (CBO): the muon beam in the
storage ring oscillates radially with frequency 𝜔𝑥 ≃ 40rad/µs, smaller than the cyclotron frequency,
so the wavelength of the radial oscillation is greater than the ring circumference. Each of the 24
calorimeters samples the positron distribution at a fixed location, so the rate at which the muon
bunch moves with respect to the detector is the CBO frequency: 𝜔𝐶𝐵𝑂 ≡ 𝜔𝐶 − 𝜔𝑥 ≃ 2.32 rad/µs.
The peak at very low frequencies, instead, is due to the “muon loss” term: muons during fill time
can be scattered away from the storage ring, typically because they interact with collimators or
because the injection angle differs from the design value, so they reduce the detected positrons in a
time-dependent way. Figure 5 (right) shows the complete fit function with 22 free parameters that
we used in Run-1 to fit data: the CBO terms are shown, as well as the 𝐽 (𝑡) function that corrects
for muon loss, and also other terms for vertical beam oscillations. The solid black curve is the FFT
of residuals when fitting with the complete function, where all previous peaks have vanished.
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5. Systematic studies and expected uncertainties for Run-2 and Run-3
There are many sources of systematic uncertainties to𝜔𝑎, most of them related to how well we know
the parameters used in positron reconstruction, such as pileup subtraction or energy calibration,
or to how well we understand the beam dynamics effects in our time distributions. In Run-1, the
biggest systematic contributions to 𝜔𝑎 were pileup, which amounted to 35 parts per billion (ppb),
and CBO that contributed for 38 ppb. The total uncertainty on 𝜔𝑎 was 434 ppb due to statistics and
56 ppb from systematic effects [12]. In Run-2 and Run-3, we collected 4.5 times more statistics than
Run-1, so we expect a statistical uncertainty of ≃ 200 ppb; in addition, there were many hardware
and software improvements to reduce the systematics. For instance, the non-ferric fast kicker system
was fixed to provide a stronger kick to the muon beam and facilitate its centering; damaged resistors
in the electrostatic quadrupole system, which strongly affected the beam dynamics introducing an
additional systematic uncertainty of 75 ppb, were replaced. On the reconstruction side, we improved
our algorithms to better resolve pileup. Thanks to these improvements, for Run-2 and Run-3 results
we expect a significant reduction to 𝜔𝑎 systematics with respect to Run-1.

Acknowledgments
This work was supported in part by the US DOE, Fermilab, the Istituto Nazionale di Fisica Nucleare
(Italy) and the European Union Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreements No. 101006726, No. 734303.

References
[1] P. Kusch and H. M. Foley, The Magnetic Moment of the Electron, Phys. Rev. 74, 250 (1948).
[2] J. S. Schwinger, On Quantum-Electrodynamics and the Magnetic Moment of the Electron,

Phys. Rev. 73, 416 (1948).
[3] M. Davier et al., A new evaluation of the hadronic vacuum polarisation contributions to

the muon anomalous magnetic moment and to 𝛼(𝑚2
𝑍
), Eur. Phys. J. C 80, 241 (2020)

[hep-ph/1908.00921].
[4] Sz. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice

QCD, Nature 593, 51-55 (2021) [hep-lat/2002.12347].
[5] B. Abi et al. (Muon 𝑔 − 2 Collaboration), Measurement of the Positive Muon Anomalous

Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021) [hep-ex/2104.03281].
[6] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys.

Rep. 887, 1 (2020) [hep-ph/2006.04822].
[7] A. Driutti (Muon 𝑔 − 2), PoS(ICHEP2022) , 053 (2022), these proceedings.
[8] R. Reimann (Muon 𝑔 − 2), PoS(ICHEP2022) , 054 (2022), these proceedings.
[9] G. W. Bennett et al., Statistical equations and methods applied to the precision muon (𝑔 − 2)

experiment at BNL, Nucl. Instrum. Meth. A 579, 1096 (2007).
[10] A. Anastasi et al., The laser-based gain monitoring system of the calorimeters in the Muon

𝑔 − 2 experiment at Fermilab, JINST 14, P11025 (2019) [physics.ins-det/1906.08432].
[11] P. Girotti (Muon 𝑔 − 2), PoS(ICHEP2022) , 228 (2022), these proceedings.
[12] T. Albahri et al. (Muon 𝑔 − 2 Collaboration), Measurement of the anomalous precession

frequency of the muon in the Fermilab Muon 𝑔 − 2 experiment, Phys. Rev. D 103, 072002
(2021) [hep-ex/2104.03247].

6

https://doi.org/10.1103/PhysRev.74.250
https://doi.org/10.1103/PhysRev.73.416
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1016/j.physrep.2020.07.006
https://doi.org/10.1016/j.physrep.2020.07.006
https://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ICHEP2022)053
https://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ICHEP2022)054
https://doi.org/10.1016/j.nima.2007.06.023
https://doi.org/10.1088/1748-0221/14/11/P11025
https://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ICHEP2022)228
https://doi.org/10.1103/PhysRevD.103.072002
https://doi.org/10.1103/PhysRevD.103.072002

	The magnetic moment of the muon
	Measurement principle of the g-2 experiment at Fermilab
	Positron detection and reconstruction
	Precession frequency analysis: fit to ``wiggle plots''
	Systematic studies and expected uncertainties for Run-2 and Run-3

