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Accidental symmetries in the scalar potential of the 2HTM Xin Wang

1. Introduction

It has been ten years since the discovery of the Higgs boson at the CERN Large Hadron
Collider (LHC) [1]. This extraordinary discovery has successfully proved the validity of the Higgs
mechanism for the spontaneous gauge symmetry breaking, and completed the last piece of the
puzzle of the Standard Model (SM). In addition, the subsequent experiments implemented by the
ATLAS and CMS collaborations after the discovery also paint a clearer portrait of the Higgs boson.
Despite the huge success, there are still some remaining puzzles related to the Higgs physics, e.g.,
nonzero neutrino masses, naturalness problem, matter-antimatter asymmetry, etc. These unsolved
problems indicate some extended versions of the Higgs sector, which are expected to be examined
over the next fifteen years [2].

Among all the extensions of the Higgs sector, the two-Higgs-triplet model (2HTM), in which
we extend the SM by introducing two triplet scalars with the same hypercharge 𝑌 = −2, is a
very attractive one. On the one hand, the 2HTM can account for nonzero neutrino masses via
the type-II seesaw mechanism [3], where the tiny neutrino masses can be attributed to the small
vacuum expectation values of the Higgs triplets. On the other hand, a salient feature of the seesaw
mechanisms is that they provide us with a natural way to explain the observed matter-antimatter
asymmetry in our Universe via the thermal leptogenesis [4]. However, if only one Higgs triplet is
added to the SM, CP violation can not be produced in the out-of-equilibrium and lepton-number-
violating decays of the Higgs triplet in the early Universe. Therefore, successful leptogenesis
requires at least two Higgs triplets [5].

As there are multiple Higgs fields in the 2HTM, the scalar potential becomes quite complex
and leads to much richer phenomenology. To be specific, the scalar potential 𝑉2HTM containing
one Higgs doublet 𝐻 and two Higgs triplets 𝝓

𝑖
= (𝜉1

𝑖
, 𝜉2

𝑖
, 𝜉3

𝑖
)T (for 𝑖 = 1, 2) can be divided into the

following three parts

𝑉2HTM = 𝑉H +𝑉𝜙 +𝑉H𝜙 . (1)

The pure-doublet potential𝑉H, the pure-triplet potential𝑉
𝜙

and the doublet-triplet-mixing potential
𝑉H𝜙

in the above equation are respectively given by

𝑉H = − 𝜇2
H𝐻

†𝐻 + 𝜆H(𝐻
†𝐻)2 ,

𝑉𝜙 = 𝑚2
11(𝝓

∗
1 · 𝝓1) + 𝑚

2
22(𝝓

∗
2 · 𝝓2) + 𝑚

2
12(𝝓

∗
1 · 𝝓2) + 𝑚

∗2
12(𝝓1 · 𝝓

∗
2) + 𝜆1(𝝓

∗
1 · 𝝓1)

2 + 𝜆2(𝝓
∗
2 · 𝝓2)

2

+ 𝜆3(𝝓
∗
1 · 𝝓1) (𝝓

∗
2 · 𝝓2) + 𝜆4(𝝓

∗
1 · 𝝓2) (𝝓1 · 𝝓

∗
2) +

𝜆5
2
(𝝓∗

1 · 𝝓2)
2 +

𝜆∗5
2
(𝝓1 · 𝝓

∗
2)

2

+ (𝝓∗
1 · 𝝓1)

[
𝜆6(𝝓

∗
1 · 𝝓2) + 𝜆

∗
6(𝝓1 · 𝝓

∗
2)
]
+ (𝝓∗

2 · 𝝓2)
[
𝜆7(𝝓

∗
1 · 𝝓2) + 𝜆

∗
7(𝝓1 · 𝝓

∗
2)
]

+ 𝜆8(𝝓
∗
1 · 𝝓

∗
1) (𝝓1 · 𝝓1) + 𝜆9(𝝓

∗
2 · 𝝓

∗
2) (𝝓2 · 𝝓2) + 𝜆10(𝝓

∗
1 · 𝝓

∗
2) (𝝓1 · 𝝓2)

+ 𝜆11(𝝓
∗
1 · 𝝓

∗
1) (𝝓2 · 𝝓2) + 𝜆

∗
11(𝝓1 · 𝝓1) (𝝓

∗
2 · 𝝓

∗
2) + 𝜆12(𝝓

∗
1 · 𝝓

∗
1) (𝝓1 · 𝝓2)

+ 𝜆∗12(𝝓1 · 𝝓1) (𝝓
∗
1 · 𝝓

∗
2) + 𝜆13(𝝓

∗
2 · 𝝓

∗
2) (𝝓1 · 𝝓2) + 𝜆

∗
13(𝝓2 · 𝝓2) (𝝓

∗
1 · 𝝓

∗
2) ,

𝑉H𝜙 = 𝜆14(𝐻
†𝐻) (𝝓∗

1 · 𝝓1) + 𝜆15(𝐻
†𝐻) (𝝓∗

2 · 𝝓2) + 𝜆16(𝐻
†𝐻) (𝝓∗

1 · 𝝓2) + 𝜆
∗
16(𝐻

†𝐻) (𝝓1 · 𝝓
∗
2)

+ 𝜆17(𝐻
†i𝝈𝐻) · (𝝓∗

1 × 𝝓1) + 𝜆18(𝐻
†i𝝈𝐻) · (𝝓∗

2 × 𝝓2) + 𝜆19(𝐻
†i𝝈𝐻) · (𝝓∗

1 × 𝝓2)
+ 𝜆∗19(𝐻

†i𝝈𝐻) · (𝝓∗
2 × 𝝓1) + (𝜇1𝐻

Ti𝜎2𝝈 · 𝝓1𝐻 + 𝜇2𝐻
Ti𝜎2𝝈 · 𝝓2𝐻 + h.c.) ,

(2)
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Figure 1: The bilinear transformation in the 2HDM.

where 𝝈 = (𝜎1, 𝜎2, 𝜎3)T are the Pauli matrices with the transpose “T” acting only on the three-
dimensional representation space. If the coupling constants in Eq. (2) satisfy specific relations, the
2HTM may automatically possess some symmetries apart from the electroweak SU(2)L ⊗ U(1)Y
gauge symmetry, which we call the accidental symmetries. Accidental symmetries can reduce the
number of free parameters, and enhance the predictive power of the theory. Possible accidental
symmetries in the two-Higgs-doublet model (2HDM) have been extensively investigated in the
previous literature, see, e.g., Refs. [6–8]. In this work, we for the first time carry out a systematic
study of all the accidental symmetries in the scalar potential of the 2HTM.

2. The bilinear-field formalism

To start with, we briefly introduce the bilinear-field formalism, which is an effective way to
study accidental symmetries in multi-Higgs models. Let us first take the 2HDM as an example [9].
Suppose we have two Higgs doublets 𝜙1 and 𝜙2, which transform in the same way under the SU(2)L
group. 𝜙1 and 𝜙2 form an SU(2) doublet Φ = (𝜙1, 𝜙2)

T. Inserting the Pauli matrices 𝜎𝜇 = (𝜎0,𝝈)
(with 𝜎0 being the two-dimensional identity matrix) between Φ† and Φ, we can obtain a four-
dimensional vector 𝑅𝜇 (cf. Fig. 1). It is easy to verify 𝑅𝜇 is actually a vector in the Minkowski
space. Hence the bilinear formalism reveals the geometrical properties of the 2HDM.

Now let us turn to the 2HTM case. Different from the 2HDM, both 𝝓 and 𝝓∗ in the 2HTM
transform in the same way under the SU(2)L group, motivating us to construct a four-dimensional
multipletΦ = (𝝓1, 𝝓2, 𝝓

∗
1, 𝝓

∗
2)

T. In fact, the four-component form ofΦ is necessary to rewrite terms
like (𝝓∗

𝑖
·𝝓∗

𝑗
) (𝝓

𝑘
·𝝓

𝑙
) (for 𝑖, 𝑗 , 𝑘, 𝑙 = 1, 2) in Eq. (2), and is also helpful to simultaneously investigate

Higgs family symmetries and generalized CP symmetries in the scalar potential. Moreover, it is
straightforward to check that Φ satisfies the Majorana condition Φ = CΦ∗ with C = 𝜎1 ⊗ 𝜎0 ⊗ I3×3
being the charge conjugation matrix [7, 8]. Similar to the 2HDM case, we can construct a vector 𝑅𝜇

in the bilinear-field space as 𝑅𝜇 = Φ†Σ𝜇Φwith Σ𝜇 = Σ
𝜇

𝛼𝛽
𝜎𝛼⊗𝜎𝛽 (for 𝛼, 𝛽 = 0, 1, 2, 3). 𝑅𝜇 should

keep invariant under the charge conjugation of Φ, leading to the constraints (Σ𝜇)T = C−1Σ𝜇C. As
a consequence, we arrive at ten nonzero Σ𝜇 which can be written as

Σ0 = +1
2
𝜎0 ⊗ 𝜎0, Σ1 = −1

2
𝜎2 ⊗ 𝜎3, Σ2 = −1

2
𝜎1 ⊗ 𝜎0, Σ3 = +1

2
𝜎2 ⊗ 𝜎1, Σ4 = −1

2
𝜎1 ⊗ 𝜎3 ,

Σ5 = +1
2
𝜎2 ⊗ 𝜎0, Σ6 = +1

2
𝜎1 ⊗ 𝜎1, Σ7 = +1

2
𝜎0 ⊗ 𝜎1, Σ8 = −1

2
𝜎3 ⊗ 𝜎2, Σ9 = +1

2
𝜎0 ⊗ 𝜎3 .

(3)

Substituting these nonzero Σ𝜇 into 𝑅𝜇, we can convert Φ into a ten-dimensional vector 𝑅𝜇, the
explicit form of which can be found in Ref. [10].
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𝑹𝒊: rank-two tensor 𝒓𝒊𝒋

SO(3): 𝐽4,5,6 S
O

(3
):

 𝐽
1
,2
,3

𝑴𝒊: rank-two tensor 𝑴𝒊𝒋 𝑳𝒊𝒋: rank-four tensor 𝑳𝒊𝒎,𝒋𝒏

Figure 2: The vector 𝑅𝑖 together with the coefficient matrices 𝑀
𝑖

and 𝐿
𝑖 𝑗

can be recast into three tensors
𝑟 𝑖 𝑗 , 𝑀

𝑖 𝑗
and 𝐿

𝑖𝑚, 𝑗𝑛
.

Now that we have constructed the vector 𝑅𝜇, the pure-triplet potential 𝑉
𝜙

then can be recast
into the quadratic form

𝑉𝜙 =
1
2
𝑀𝜇𝑅

𝜇 + 1
4
𝐿𝜇𝜈𝑅

𝜇𝑅𝜈 , (4)

where both 𝑀𝜇 and 𝐿𝜇𝜈 are coefficient matrices defined in Ref. [10].

3. Accidental symmetries in the 2HTM

With the help of the bilinear-field formalism, we are going to investigate the accidental sym-
metries in the 2HTM potential. The basic strategy is as follows. First, we determine the maximal
symmetry group of the 2HTM. Then we carefully analyze the subgroups of the maximal symme-
try group and find out all the continuous symmetries as well as discrete 𝑍2 symmetries that the
pure-triplet scalar potential𝑉

𝜙
can accommodate. Combining them together we can arrive at the ac-

cidental symmetries of 𝑉
𝜙
. Finally, we take the doublet-triplet-mixing potential into consideration

and obtain the complete category of accidental symmetries in the 2HTM.
In order to determine the maximal symmetry group of the 2HTM, we should first require the

kinetic terms of Φ to keep invariant under the symmetry transformation on Φ, which leads to the
unitary group U(4). The U(4) group will be further constrained by the Majorana conditions, i.e.,
the generators 𝐽𝑎 (for 𝑎 = 1, 2, 3, · · · , 16) of the U(4) group should satisfy C−1𝐽𝑎C = −(𝐽𝑎)∗,
which reduce the number of generators to six, namely,

𝐽1 =
1
2
𝜎3 ⊗ 𝜎3 , 𝐽2 =

1
2
𝜎3 ⊗ 𝜎1 , 𝐽3 =

1
2
𝜎0 ⊗ 𝜎2 ,

𝐽4 =
1
2
𝜎3 ⊗ 𝜎0 , 𝐽5 =

1
2
𝜎1 ⊗ 𝜎2 , 𝐽6 =

1
2
𝜎2 ⊗ 𝜎2 .

(5)

It is not difficult to examine that the above generators satisfy the following Lie algebra

[𝐽𝑖 , 𝐽 𝑗] = i𝜖 𝑖 𝑗𝑘𝐽𝑘 , [𝐽𝑖+3, 𝐽 𝑗+3] = i𝜖 𝑖 𝑗𝑘𝐽𝑘+3 , [𝐽𝑖 , 𝐽 𝑗+3] = 0 , (for 𝑖, 𝑗 , 𝑘 = 1, 2, 3) (6)

with 𝜖 𝑖 𝑗𝑘 being the three-dimensional Levi-Civita symbol. Hence one can immediately find that
the maximal symmetry group in the Φ-space is isomorphic to SU(2) ⊗ SU(2). Now we come back
to the 𝑅𝜇 space. The zero-component 𝑅0 = 𝝓∗

1 · 𝝓1 + 𝝓∗
2 · 𝝓2 remains unchanged under the unitary

transformations on Φ, so we only focus on the “spatial” components 𝑅𝑖 . As there is a “two-to-one
correspondence” between the Φ- and 𝑅𝑖-space, the maximal symmetry group in the 𝑅𝑖-space turns
out to be SO(4) ≃ [SU(2) × SU(2)]/𝑍2.
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Next we search for the possible accidental symmetries in the pure-triplet potential 𝑉
𝜙
. As

has been mentioned before, accidental symmetries in the 2HTM are the consequences of certain
relations among the coupling constants. In order to find out these relations, we rearrange the
components of 𝑅𝑖 into a rank-two tensor 𝑟 𝑖 𝑗 , whose elements are defined as 𝑟 𝑖 𝑗 = 𝑅3𝑖+ 𝑗−3 (for
𝑖, 𝑗 = 1, 2, 3). Correspondingly, the spatial components of 𝑀𝜇 and 𝐿𝜇𝜈 can also be recast into two
tensors 𝑀

𝑖 𝑗
and 𝐿

𝑖𝑚, 𝑗𝑛
, as illustrated in Fig. 2. It is easy to identify that each column (or row) of 𝑟 𝑖 𝑗

can be regarded as the fundamental representation of the group SO(3)𝑖 [or SO(3) 𝑗] generated by
{𝐽1, 𝐽2, 𝐽3} (or {𝐽4, 𝐽5, 𝐽6}), which allows us to implement the similar method in Ref. [6] to figure
out all the accidental symmetries in the pure-triplet potential of the 2HTM.

Let us take the maximal symmetry group SO(4) for instance. Such a symmetry can be realized
by requiring 𝐾1 and 𝑄 to be proportional to the identity matrix I3×3, and all the other coupling
matrices to be zero. As a result, we arrive at

𝑚2
11 = 𝑚2

22 , 𝑚2
12 = 0 , 𝜆1 = 𝜆2 , 𝜆3 = 2𝜆1 − 2𝜆8 ,

𝜆4 = 𝜆10 = 2𝜆8 = 2𝜆9 , 𝜆5 = 𝜆6 = 𝜆7 = 𝜆11 = 𝜆12 = 𝜆13 = 0 .
(7)

Keeping the above relations in mind, we can express the SO(4)-invariant potential 𝑉
𝜙,SO(4) as

𝑉
𝜙, SO(4) =𝑚

2
11(𝝓

∗
1 · 𝝓1 + 𝝓∗

2 · 𝝓2) + 𝜆1(𝝓
∗
1 · 𝝓1 + 𝝓∗

2 · 𝝓2)
2

+ 2𝜆8
[
(𝝓∗

1 · 𝝓2) (𝝓1 · 𝝓
∗
2) − (𝝓∗

1 · 𝝓1) (𝝓
∗
2 · 𝝓2)

]
+ 𝜆8

[
(𝝓∗

1 · 𝝓
∗
1) (𝝓1 · 𝝓1) + 2(𝝓∗

1 · 𝝓
∗
2) (𝝓1 · 𝝓2) + (𝝓∗

2 · 𝝓
∗
2) (𝝓2 · 𝝓2)

]
,

(8)

where only three independent parameters 𝑚11, 𝜆1 and 𝜆8 are left. Similarly, one can analyze other
continuous subgroups of SO(4) and find out all the continuous symmetries in 𝑉

𝜙
.

Apart from the continuous symmetries, discrete 𝑍2 symmetries may also exist in 𝑉
𝜙
. This

point can be easily understood since if 𝑅𝜇 and 𝑅𝜈 in Eq. (4) simultaneously change their signs,
the quadratic term of 𝑉

𝜙
will remain unchanged. We notice that 𝑟 𝑖 𝑗 could exhibit three different

patterns if we act a 𝑍2 transformation on Φ, namely,

(a)
©«
+ + −
+ + −
− − +

ª®®¬ , (b)
©«
− − −
+ + +
− − −

ª®®¬ , (c)
©«
+ − −
+ − −
+ − −

ª®®¬ . (9)

Pattern (a) means the elements in one row and one column change their signs; Pattern (b) refers
to the case where the elements in two rows flip their signs; Pattern (c) corresponds to the scenario
where the signs of the elements in two columns are reversed. The accidental symmetries should
be the combination of all possible continuous symmetries and 𝑍2 symmetries. For one continuous
symmetry, we should identify whether it has already covered all the 𝑍2 symmetries in the 𝑅𝑖-space.
If not, we need to include the 𝑍2 symmetries that have been ignored in the previous analysis.

Finally we take the doublet-triplet-mixing terms into consideration. There are three different
types of doublet-triplet-mixing terms, i.e., (𝐻†𝐻) (𝝓∗

𝑖
·𝝓

𝑗
), (𝐻†i𝝈𝐻) · (𝝓∗

𝑖
×𝝓

𝑗
) and 𝐻Ti𝜎2𝝈 ·𝝓

𝑖
𝐻.

The inclusion of (𝐻†𝐻) (𝝓∗
𝑖
·𝝓

𝑗
) will not influence the accidental symmetries in the scalar potential,

as they behave similarly as the bilinear terms 𝝓∗
𝑖
· 𝝓

𝑗
under the transformations of 𝝓

𝑖
. If (𝐻†i𝝈𝐻) ·

(𝝓∗
𝑖
× 𝝓

𝑗
) terms are included, the maximal symmetry group will be reduced to O(3)𝑖 ⊗ 𝑂 (2) 𝑗 .
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The trilinear terms 𝐻Ti𝜎2𝝈 · 𝝓
𝑖
𝐻 could violate all the accidental symmetries except the SO(2) 𝑗

and 𝑍2 symmetries. Therefore, the trilinear terms can be viewed as soft symmetry-breaking terms
which are phenomenologically important in explaining tiny neutrino masses and avoiding undesired
Goldstone bosons after the spontaneous symmetry breaking. After a careful analysis of all the
accidental symmetries, we find that there are in total eight distinct types of accidental symmetries
for the 2HTM potential. Please refer to Table 2 in Ref. [10] for the detailed classification.

4. Summary

We explore the accidental symmetries in the scalar potential of the 2HTM. We have proved
that the maximal symmetry group in the 2HTM is SO(4), and demonstrated that there are eight
different kinds of accidental symmetries in the scalar potential. These symmetries are useful for us
to construct more predictive models with less parameters, investigate vacuum stability conditions
and vacuum solutions, and study the topological structures of the 2HTM.

This work was supported in part by the National Natural Science Foundation of China under
grant No. 11835013.
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