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A new criterion to extend the Standard Model of particle physics is proposed: the symmetries
of physical microscopic forces originate from the automorphism groups of main Cayley–Dickson
algebras, from complex numbers to octonions and sedenions. This correspondence leads to a
natural and minimal enlargement of the color sector, from a 𝑆𝑈 (3) gauge group to an exceptional
Higgs-broken 𝐺 (2) group. In this picture, an additional ensemble of massive 𝐺 (2)-gluons
emerges, which is separated from the particle dynamics of the SM and might play the role
of dark matter. A fully Lagrangian approach is provided, along with the description of the
breaking mechanism, the 𝐺 (2) particle spectrum, the possible composite DM states and their
stability examination. Moreover, 𝐺 (2) gauge theory could guarantee peculiar manifestations in
astrophysical compact objects, which can be observed in the future studying gravitational waves.
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1. Introduction

Despite its great success and prediction capability, the Standard Model (SM) of particle physics
is afflicted by several problems: above all, dark matter (DM) is probably the most compelling and
very long-standing conflict of modern physics. The most convincing particle candidates, the weakly
interacting massive particles (WIMPS), have not been discovered yet: direct, indirect and collider
searches show no evidence of new particles approximately up to the 1 TeV scale [3, 22, 27, 30, 31].
This is a strong hint that the Naturalness criterion for the Higgs sector and the so-called WIMP
Miracle [38] could not be a prerogative of Nature. We propose an approach based on a division
algebras conjecture capable of selecting a unique extension of the SM, which introduces a branch
of exceptional matter particles from a simple and minimally high symmetry [23]: fundamental
interactions are identified with the automorphism groups of Cayley-Dickson algebras. From the
automorphism of octonions (and sedenions) algebra, the promising exceptional symmetry group
𝐺 (2) can be pinpointed to solve the DM problem. We will demonstrate that, once broken through a
Higgs-like mechanism, 𝐺 (2) represents the optimal gauge group to describe strong interaction and
dark matter at the same time.

2. Fundamental forces from division algebras automorphisms
In the last decades many attempts to connect the Standard Model of elementary particles with
division algebras have been made, showing it is worthwhile establishing relations between algebraic
structures and symmetry groups [10, 12, 15, 16, 18, 20, 21]. Following the Cayley–Dickson
construction process [12, 16], one can build up a sequence of larger and larger algebras, adding new
imaginary units: R,C,H,O are the so-called division algebras, which are real numbers, complex
numbers, quaternions and octonions, respectively. During the construction process, the algebras
lose some peculiar properties, one at a time. The process does not terminate with octonions:
greater 2𝑛-dimensional algebras can be constructed, for any positive integer 𝑛. The link between
unitary groups and division algebras has been diffusely studied [7, 13, 32]. Unitary groups are the
fundamental bricks to build the particle Standard Model, because each fundamental force can be
described by a unitary or special unitary group [6, 24, 33, 34, 35], being 𝐺 = 𝑆𝑈 (3) ×𝑆𝑈 (2) ×𝑈 (1)
the SM group of strong 𝑆𝑈 (3), weak 𝑆𝑈 (2) and hypercharge 𝑈 (1) interactions [35]. Besides its
symmetry, the SM includes three fermions families. Starting from the most simple complex algebra
and SM symmetry group, it is easy to find a direct connection between the electromagnetism (or
Quantum Electrodynamics) 𝑈 (1) formalism and the complex number field C: in fact the group
𝑈 (1), the smallest compact real Lie group, corresponds to the circle group 𝑆1, consisting of all
complex numbers with absolute value 1 under multiplication, which is isomorphic to the 𝑆𝑂 (2)
group of rotation [14]. For 𝑛 ≥ 1, one can also consider for the comparison the 𝑛-torus 𝑇𝑛, that is
defined to be R𝑛/Z𝑛 � 𝑈 (𝑛) � 𝑆𝑂 (2)𝑛 � (𝑆1)𝑛, which shows off the deep connection between
𝑈 (1) gauge symmetry and other representations strictly connected to complex numbers [14, 29].
It is also true that the 𝑛 × 𝑛 complex matrices which leave the scalar product ⟨, ⟩ invariant form
the group 𝑈 (𝑛) = 𝐴𝑢𝑡 (C𝑛, ⟨, ⟩), i.e. the group of automorphisms of C𝑛 as a Hilbert space [2].
Even 𝑆𝑈 (2) weak isospin can be connected with quaternions, [20]: 𝑆𝑈 (2) naturally embeds into
H as the group of quaternion elements of norm 1, with a perfect analogy with respect to 𝑈 (1)
and complex numbers. Indeed, since unit quaternions can be used to represent rotations in 3-
dimensional space, there is a surjective homomorphism from 𝑆𝑈 (2) to the rotation group 𝑆𝑂 (3)

2



P
o
S
(
I
C
H
E
P
2
0
2
2
)
4
1
3

An exceptional 𝐺 (2) extension of the Standard Model Nicolo Masi

Charge (𝑛𝑔) Group Force Algebra Dim Commutative Associative Alternative Normed Flexible
𝑄(1) 𝑈 (1) EM C 2 Yes Yes Yes Yes Yes
𝑇 (3) 𝑆𝑈 (2) Weak H 4 No Yes Yes Yes Yes
𝐶 (8) 𝑆𝑈 (3) Strong O or S 8/16 No No Yes Yes Yes
𝐸𝐶 (6) broken-𝐺 (2) Exceptional Strong O or S 8/16 No No No No Yes

Table 1 Schematic correspondence between forces, groups and algebras. See [23] for details.

[20]. For the quaternionic basis these maps 1 ↦→ 𝐼, i ↦→ −i𝜎1, j ↦→ −i𝜎2, k ↦→ −i𝜎3 stand, where
𝜎1,2,3 are the three Pauli matrices and 𝐼 the identity matrix. So the correspondence between the
automorphism of quaternion algebra and the SM symmetry group of weak force can be clearly
shown: for quaternions 𝐴𝑢𝑡 (H) = 𝑆𝑂 (3), where 𝑆𝑂 (3) is homomorphic to 𝑆𝑈 (2) in turn, and
the universal cover of 𝑆𝑂 (3) is the spin group 𝑆𝑝𝑖𝑛(3), which is isomorphic to 𝑆𝑈 (2). So 𝑆𝑈 (2)
and 𝑆𝑂 (3) algebraic structures are equivalent and 𝑠𝑢(2) = 𝑠𝑝𝑎𝑛(i𝜎1, i𝜎2, i𝜎3). It seems logical
to revise the next division algebra, the octonion algebra O for a possible description of 𝑆𝑈 (3)
[9, 28], but the result is less straightforward: the group of automorphisms of the octonion algebra
corresponds to the exceptional Lie algebra 𝐺 (2), the smallest among the known exceptional Lie
algebras: 𝐴𝑢𝑡 (O) = 𝐺 (2) [37]. The exceptional 𝐺 (2) group is certainly bigger than SM 𝑆𝑈 (3),
as it includes 𝑆𝑈 (3) and is equipped with six additional generators [17]. Summarizing, for non
real division algebras it turns out that Aut(C) � 𝑈 (1), Aut(H) � 𝑆𝑈 (2), Aut(O) ≡ 𝐺 (2). For
the sedenion algebra, the fifth Cayley-Dickson algebra, there is an important relation demonstrated
by Brown in [5]: Aut(S) = Aut(O) × 𝑆3, where 𝑆3 is the permutation group of degree three. So
the inner symmetries of this non-division algebra can be again extracted from the automorphism
group of octonions and the only difference is a factor of the permutation group 𝑆3: sedenion
algebra could constitute the searched simplicity criterion to select the full symmetry of a three
generations Standard Model strong force. The gauge groups 𝑈 (1), 𝑆𝑈 (2), 𝑆𝑈 (3), describing the
three fundamental forces, find mathematical correspondence into the division algebras C,H,O
respectively: Table 1 summarizes this correspondence. However, the octonion and sedenion
automorphism relations point towards a different group, which is manifestly larger than the usual
8-dimensional 𝑆𝑈 (3) color group of the Standard Model. Therefore

Aut(C) × Aut(H) × Aut(S) = Aut(C) × Aut(H) × Aut(O) × 𝑆3 � 𝑈 (1) × 𝑆𝑈 (2) × 𝐺 (2) × 𝑆3
(1)

could give the overall unbroken Standard Model symmetry. Here the automorphism selection is
invoked to predict something beyond current SM and it works as a guideline to replace 𝑆𝑈 (3) color
itself with the smallest exceptional group: fundamental forces must be isomorphic to the automor-
phisms groups of the division algebras built up through the Cayley–Dickson construction. No more
physics is needed nor predicted, except for the six additional degrees of freedom, i.e. boson fields,
which represent the discrepancy between 𝐺 (2) and 𝑆𝑈 (3) generators. In this scenario, the strong
force acquires a more complex structure, which includes the usual color sector and an enlarged
strong exceptional dynamics: to recover standard 𝑆𝑈 (3) color strong force description, the new
𝐺 (2) color sector should be broken by a Higgs-like mechanism and separated into two parts, one
visible and the other excluded from the dynamics due to its peculiar properties.
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3. A G(2) gauge theory for the strong sector and implications for dark matter
To explicitly construct the 14 7 × 7 real matrices in the fundamental representation, one can

choose the first eight generators of 𝐺 (2) as [17, 25]:

Λ𝑎 =
1
√

2

©«
𝜆𝑎 0 0
0 −𝜆∗𝑎 0
0 0 0

ª®®¬ . (2)

where 𝜆𝑎 (with 𝑎 ∈ {1, 2, ..., 8}) are the Gell-Mann generators of 𝑆𝑈 (3), which indeed is a subgroup
of 𝐺 (2). Λ3 and Λ8 are diagonal and represent the Cartan generators w.r.t.𝑆𝑈 (3). The remaining
six generators can be found studying the root and weight diagrams of the group [4, 8, 11], and can
be written as:

Λ9 =
1
√

6

©«
0 −𝑖𝜆2

√
2𝑒3

𝑖𝜆2 0
√
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√
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Λ13 =
1
√

6

©«
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√
2𝑒1

𝑖𝜆7 0
√
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2𝑒𝑇1 0

ª®®¬ ,Λ14 =
1
√

6

©«
0 −𝜆7 𝑖

√
2𝑒1

−𝜆7 0 −𝑖
√

2𝑒1
−𝑖
√

2𝑒𝑇1 𝑖
√

2𝑒𝑇1 0

ª®®¬ , (5)

where 𝑒𝑖 are unit vectors. Under 𝑆𝑈 (3) subgroup transformations, the 7-dimensional representation
decomposes into [17, 25] {7} = {3} ⊕ {3} ⊕ {1}. Since all 𝐺 (2) representations are real, the {7}
representation is identical to its complex conjugate, so that 𝐺 (2) “quarks” and “anti-quarks” are
conceptually indistinguishable. This representation describes a 𝑆𝑈 (3) quark {3}, a 𝑆𝑈 (3) anti-
quark {3} and a 𝑆𝑈 (3) singlet {1}. The generators transform under the 14-dimensional adjoint
representation of 𝐺 (2) [17, 25], which decomposes into [17, 25, 26] {14} = {8} ⊕ {3} ⊕ {3}. So the
𝐺 (2) “gluons” ensemble is made of 𝑆𝑈 (3) gluons {8} plus six additional “gluons” which have 𝑆𝑈 (3)
quark and anti-quark color quantum numbers. The product of two fundamental representations {7}⊗
{7} = {1}⊕ {7}⊕ {14}⊕ {27}, shows a singlet {1}: as a noteworthy implication, two𝐺 (2) “quarks”
can form a color-singlet, or a “diquark”. Moreover, just as for 𝑆𝑈 (3) color, three 𝐺 (2) “quarks” can
form a color-singlet “baryon”: {7}⊗{7}⊗{7} = {1}⊕4 {7}⊕2 {14}⊕3 {27}⊕2 {64}⊕{77}. Also
pentaquarks and hexaquarks are allowed. States with baryon number 0 and 3 are in common with
QCD whereas 𝑛𝐵 = 1, 2, of 𝐽 = 1/2 color-singlet 𝑞𝐺𝐺𝐺 hybrids and 𝐽 = 0, 1 diquarks respectively,
are 𝐺 (2) specific. Summarizing: a 𝐺 (2) gauge theory has colors, anticolors and color-singlet, and
14 generators, 8 of them transforming as ordinary gluons (as an octuplet of 𝑆𝑈 (3)), while the other
6 𝐺 (2) gauge bosons separates into {3} and {3}, keeping the color quarks/antiquarks quantum
numbers, but they are still vector bosons. 𝐺 (2) is not a proper gauge theory for a real Quantum
Chromodynamics theory: adding a Higgs-like field, in order to break 𝐺 (2) down to 𝑆𝑈 (3), 6 of
the 14 𝐺 (2) “gluons” gain a mass proportional to the vacuum expectation value (vev) 𝑤 of the new
Higgs-like field, the other 8 𝑆𝑈 (3) gluons remaining untouched and massless. The Lagrangian of
such a 𝐺 (2)-Higgs model can be written as [17, 19, 25, 26]:

L𝐺2𝐻 [𝐴,Φ] = L𝑌𝑀 [𝐴] + (𝐷𝜇Φ)2 −𝑉 (Φ) (6)
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where L𝑌𝑀 [𝐴] is the proper Yang-Mills Lagrangian, Φ(𝑥) = (Φ1(𝑥),Φ2(𝑥), ...,Φ7(𝑥)) is the
real-valued Higgs-like field, 𝐷𝜇Φ = (𝜕𝜇 − 𝑖𝑔𝐺𝐴𝜇)Φ is the covariant derivative and 𝑉 (Φ) =

𝜆(Φ2 − 𝑤2)2 the quadratic scalar potential, with 𝜆 > 0. We can choose a simple vev like Φ0 =
1√
2
(0, 0, 0, 0, 0, 0, 𝑤) to break 𝐺 (2) and re-obtain the familiar unbroken 𝑆𝑈 (3) symmetry. This new

scalarΦ, which acquires a typical mass of 𝑀𝐻 =
√

2𝜆𝑤 from the expansion of the potential about its
minimum [35], should be a different Higgs field w.r.t. the SM one, with a much higher vev, in order
to disjoin massive gluons dynamics from SM one, and a strong phenomenology. Such a strongly
coupled massive field could be ruled out by future LHC and Future Circular Collider searches [1].
In this picture, 6 massless Goldstone bosons are eaten and become the longitudinal components
of 𝐺 (2) vector gluons corresponding to the broken generators, which acquire the eigenvalue mass
𝑀𝐺 = 𝑔𝐺𝑤 through the Higgs mechanism. When the expectation value of the Higgs-like field is
sent to infinity, the massive𝐺 (2) “gluons" are completely removed from the dynamics and the usual
𝑆𝑈 (3) string potential reappears. Only high 𝑤 values (with 𝑤 much greater that the SM Higgs
vev) are considered in order to realize a consistent dark matter scenario: these bosons must be
separated from the visible SM sector, without experimentally accessible electroweak interactions,
unlike WIMPs. This could be due to the very high energy scale of the𝐺 (2)−𝑆𝑈 (3) phase transition,
occurring at much greater energies than electroweak breaking scale. This could be the realization
of a beyond Naturalness criterion. Indeed, 𝐺 (2) gluons, as 𝑆𝑈 (3) ones, are electrically neutral and
immune to interactions with light and weak 𝑊 , 𝑍 bosons at tree level. In our case, the six dark
gluons can form dark glueballs constituted by two or three (or multiples) 𝐺 (2) gluons, according
to {14} ⊗ {14} = {1} ⊕ ... and {14} ⊗ {14} ⊗ {14} = {1} ⊕ ... representations [36], with integer
total angular momentum 𝐽 = 0, 2 and 𝐽 = 1, 3 for 2-gluons and 3-gluons balls respectively. In
principle, exceptional-colored broken-𝐺 (2) glueballs should not be stable and we have to introduce
a stabilizing feature, such as an accidental symmetry, a global discrete 𝑍2 (or 𝑍𝑁 ) symmetry
or 𝐺–parity conservation for a generic Yang–Mills [23]. From a cosmological point of view,
the usual WIMP-like scenario built via the freeze–out mechanism cannot be achieved, since these
gluons/glueballs are never in thermal equilibrium with the baryon-photon fluid in the early Universe:
we have to invoke a FIMP scenario and a SIMP Dark freez-out with number changing processes
applied to an exotic Higgs-portal (see [23] for a complete dissertation). Possible manifestations of
𝐺 (2) gluons in the present Universe are massive boson stars with repulsive quartic self-interaction
potential: this heavy 𝐺 (2) gluon dark matter is indeed capable of producing stellar objects, which
could populate the dark halos [23].

4. Conclusions
Fundamental microscopic forces might be manifestation of the conceivable algebras that can be

built via the Cayley-Dickson process. The automorphism correspondence higlights the mismatch
between 𝑆𝑈 (3) strong force and octonions: the automorphism group is the exceptional group 𝐺 (2),
which is not exhausted by 𝑆𝑈 (3). In their difference new physics lies, in the form of six additional
massive bosons, potentially disconnected by SM dynamics: the exceptional-colored 𝐺 (2) gluons.
When the Universe cooled down, reaching a proper far beyond TeV energy scale at which 𝐺 (2)
becomes broken, usual 𝑆𝑈 (3) QCD appeared, while an extra Higgs mechanism produced a secluded
sector of cold bosonic states: the symmetry breaking mechanism is completely analogue w.r.t. the
SM one for the electroweak sector. 𝐺 (2) could guarantee peculiar manifestations in extreme
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astrophysical compact objects, such as boson stars made of 𝐺 (2) glueballs, which can populate the
dark halos and be observed in the future studying their gravitational waves and dynamics.
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