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While simulation is a crucial cornerstone of modern high energy physics, it places a heavy burden
on the available computing resources. These computing pressures are expected to become a
major bottleneck for the upcoming high luminosity phase of the LHC and for future colliders,
motivating a concerted effort to develop computationally efficient solutions. Methods based on
generative machine learning models hold promise to alleviate the computational strain produced
by simulation, while providing the physical accuracy required of a surrogate simulator.

This contribution provides an overview of a growing body of work focused on simulating showers in
highly granular calorimeters, which is making significant strides towards realising fast simulation
tools based on deep generative models. Progress on the simulation of both electromagnetic
and hadronic showers will be reported, with a focus on the high degree of physical fidelity
achieved. Additional steps taken to address the challenges faced when broadening the scope of
these simulators, such as those posed by multi-parameter conditioning, will also be discussed.
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1. Introduction

The ability to precisely simulate particle interactions with complex detector systems lies at
the heart of analysis in high energy physics. Traditionally, simulation toolkits such as GEANT4 [1]
have relied on the use of Monte-Carlo methods. While such methods can produce high quality
simulators they are slow, with the strain they place on the available computing resources expected
to become prohibitive for upcoming experiments [2]. Initiated by Ref. [3], a path to potentially
speed up the simulation of calorimeter showers through the use of generative models, typically the
most intensive part of a detector simulation, is emerging.

In this work, we address the simulation of particle showers in highly granular calorimeters with
surrogate simulators based on generative models. Building on initial work that developed several
models with the ability to provide a good description of several key differential distributions for
photon showers [4] [5], we report on progress in two important directions. In the first instance,
we review recent work which demonstrated high fidelity simulation of hadron showers in a highly
granularity calorimeter, based on Ref. [6]. In the second instance, we show progress on the ability
to condition these simulation tools on multiple parameters- a crucial step towards being able to
simulate an entire calorimeter subsystem.

2. Datasets

Our studies focus on the International Large Detector (ILD) [7], a next generation particle
detector proposed for the International Linear Collider (ILC). The detector features highly gran-
ular sampling calorimeters optimized for particle flow reconstruction. The Si-W electromagnetic
calorimeter (ECAL) consists of 30 active silicon layers in a tungsten absorber stack, with the silicon

2. To create the dataset described in Section 5, cells

layers featuring sensors of size 5 X 5 mm
containing energy deposits were projected into a regular grid containing x X y X z = 30 X 60 x 30
cells with each cell in the shower image corresponding to exactly one sensor. Photons were fired
into a fixed point on the face of the ECAL barrel with energy varying uniformly in the range
10 — 100 Gev simultaneously with the polar angle, which was varied uniformly in the range 30 — 90
degrees with constant azimuthal angle. In total, 500k such showers were used to create the training
dataset. Additionally, 9 test datasets, each consisting of 1900 showers produced by photons at fixed
combinations of incident energies of {20, 50, 90} GeV and polar angles of {40, 60, 85} degrees,
were created to check the model performance across the phase space.

The Analogue Hadronic Calorimeter (AHCAL) of the ILD consists of 48 layers, with active
scintillator tiles of size 3 x 3 cm? individually read out by Silicon Photomultipliers (SiPMs), in a
stack of stainless steel absorber plates. To create the dataset described in Section 4, the ECAL was
removed from the geometry and a 3.5 T axial magnetic field applied. The sensors were projected
into a regular grid, consisting of x X y X z = 25 x 25 x 48 cells. Charged pions (") were fired
under an approximately constant angle into an almost constant position on the calorimeter face. The
energy of the incident pions was varied uniformly in the range 10 — 100 GeV, with punch-through
particles which traversed the calorimeter without showering being removed. The data set was split
into 500k showers used for training, and 49k for a test set. Additionally, single energy samples of
8k showers were produced for incident particle energies in 10 GeV steps between 20 and 90 GeV.
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Both datasets were simulated using GEaANT4 [1] vesion 10.4 with the QGSP_ BERT physics
list, as well as a detailed and realistic detector model of ILD implemented in DD4HEP [8].
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Figure 1: Left: four example 2D projections of photon showers. Right: two examples of pion showers. On
average the pion showers exhibit significantly more varied topologies. Figure taken from [6].

Figure 1 shows examples of photon showers (left) compared to pion showers (right), created by
incident particles at the same energy. Pion showers can be seen to display much larger event-to-event
fluctuations and significantly more complex topologies. In both cases, the high granularity of the
calorimeters pose significant challenges for a generative model based simulator.

3. Generative Models

Generative models aim to learn the underlying distribution of a given set of training data, in
a manner that permits later sampling and thereby the generation of new data samples. All models
considered here were built in PyTorcH [9].

The first generative model considered in these studies is a rather lightweight Wasserstein
Generative Adversarial Network (WGAN) [10]. It uses the Wasserstein-1 distance as a loss function,
which can be expressed as

Lwcan =supserip {E[f ()] —E[f ()]} (1)

The supremum runs over all 1-Lipschitz functions f, and is approximated by a Critic network C
during the adversarial training, which estimates the Wasserstein distance between real and generated
images. A constrainer network [11] is incorporated into the architecture to aid the performance of
the energy conditioning in the setup.

The second generative model is a significantly more complicated Bounded Information Bot-
tleneck Autoencoder (BIB-AE), first proposed in [12], that unifies features present in many popular
GAN and VAE architectures. At its core, it is an autoencoder which maps shower images to a lower
dimensional latent space and back. A number of secondary components aid either the regularisation
of the latent space, or the reconstruction of images from the latent space. To ensure regularisation of
the latent space, a Kullback-Leibler divergence (Lxrp) term is combined with a Maximum Mean
Discrepancy (Lasnmp) term and a Wasserstein GAN-like critic (Lcyiric, ). A separate dual purpose
Wasserstein GAN-like critic (Lcyitic) simultaneously judges whether showers look realistic and
facilitates reconstruction from the latent space. The individual loss terms are then combined with
independent weights from hyperparameters ;
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Lprpa-ae = Bxrp - LxkLp + Bump - Lump )
+,8CriticL : LCriticL +ﬂCritic : -ECritic-

After the training of the main architecture, a dedicated post-processor network is trained with
the intention of improving the cell energy spectrum, as well as refining the energy conditioning.
This stage of the training primarily relies on a number of loss terms using either a Mean Squared
Error (M SE) or Sorted Kernel Maximum Mean Discrepancy (SK — M M D) [4]. Further details on
the architectures and their specific implementations can be found in Ref. [6].

4. Hadron Shower Simulation

Ref. [6] studied the ability of the BIB-AE and WGAN models described in Section 3 to
reproduce statistical distributions of physically relevant observables at the simulation level, as well as
performing an initial investigation into performance after interfacing with a state-of-the-art Particle
Flow reconstruction algorithm. Here, we highlight some salient distributions at the simulation
level, refering the reader to that work for a thorough treatment and discussion of performance after
reconstruction.
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Figure 2: Exemplary distributions comparing physics quantities between GEANT4 and the different generative
models for charged pion showers. Left: Cell energy spectrum in MeV on the bottom axis, and in multiples
of the expected energy deposit of a minimum ionizing particle (MIP) on the top axis. The greyed out area
indicates the 0.5 MIP cutoff. Middle: the total visible energy deposited in the calorimeter. Right: the layer
in which showers start. The left and right plots are for showers generated with uniform energies in the 10-100
GeV range. Plots from Ref. [6].

Some key results from the study can be seen in Figure 2. The GEanT4 distributions are shown
in the grey, filled distributions, while the generative model results are shown by the dashed lines- the
BIB-AE in blue, and the WGAN in orange. Cells with an energy of less than half the most probable
energy deposition of a minimal ionizing particle (MIP), which is 0.25 MeV for this calorimeter, are
mapped to zero. This region lies below the noise floor of a typical detector, indicated by the hatched
region of the cell energy distribution shown in the left plot. The key feature in this distribution is the
distinct peak that occurs at 1 MIP. This feature is well described by the BIB-AE architecture, but is
not captured by the WGAN, inline with previous work [4]. The central distribution shows the total
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visible energy deposited in the calorimeter, which is well described by both the BIB-AE and the
WGAN. The rightmost plot shows the distribution of the layers in which showers start, which the
BIB-AE is able to reproduce well in contrast to the WGAN, which produces a significant excess of
early starting showers. The models reached a relative speed-up of up to 3-4 orders of magnitude [6].

5. Multi-parameter Conditioning for Photon Shower Simulation

In ongoing work, the BIB-AE model described in Section 3 has been adapted to permit condi-
tioning of the model on the incident angle of photons as well as their energy. The main challenge
for the model stems from the significantly expanded phase space that has to be covered, which is
created as a result of simultaneously varying the two conditioning parameters. To benchmark the
physics performance of the model, showers are generated with the fixed energy and angle combina-
tions spread across the phase space described in Section 2. Exemplary distributions are shown in
Figure 3. The GeanTt4 distributions are again shown in the filled distributions, while the BIB-AE
distributions are shown with a dashed line. The distributions are colour coded according to the
incident angle to which they pertain- 40 degree showers in orange, 60 degree showers in green
and 85 degree showers in blue. A cut at half a MIP is again applied, which in this case lies at 0.1
MeV. The leftmost plot and the central plot show distributions that are strongly correlated with the
incident angle and energy of the incident photon, and therefore provide a strong indication of the
conditional performance of the model. The reconstructed angular response for 20 GeV photons in
the left plot is found from a principal component analysis applied to the shower, while in the central
plot the visible energy response for 40 degree showers is shown for incident energies of 20, 50 and 90
GeV. The good agreement between generated showers and the corresponding GEanT4 distributions
indicates a strong performance from the model in terms of angular and energy conditioning. The
rightmost plot shows the cell energy distribution for 90 GeV, 60 degree photons, with the region
below half a MIP again lying in the grey hatched region. The rise in the cell energy distribution
that is now somewhat smeared by the incident angle is still well described by the model, indicating
that the post-processor network can be conditioned on multiple parameters and still provide a good
description of this distribution.
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Figure 3: Exemplary distributions comparing physics quantities between GEant4 and BIB-AE for angled
photons. Left: angular response for 20 GeV photons. Middle: total visible energy deposited in the calorimeter
for 40 degree photons. Right: cell energy spectrum for 90 GeV, 60 degree photons.
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6. Conclusions

Generative models are promising options for producing significantly faster simulation tools.
We have demonstrated that these models possess the capability to simulate hadron showers in highly
granular calorimeters, as well as generalising to multi-parameter conditioning setups. Although
significant progress has been made, there is still some way to go for a full realisation of such
tools- including integration into existing frameworks and tackling complex and irregular detector
geometries.
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