PROCEEDINGS

OF SCIENCE

Modernisation of the LHCb continuous integration build
system

Maciej Szymarnski“* and Marco Clemencic®
2CERN,
Esplanade des Particules 1, P.O. Box 1211 Geneva 23, Switzerland

E-mail: maciej.szymanski@cern.ch, marco.clemencic@cern.ch

In the context of the LHCb upgrade for LHC Run 3, the experiment software builds and release
infrastructure are being improved. In particular, we present the LHCb nightly builds pipelines
which are modernised to provide a faster turnaround of the produced builds. The revamped system
organises tasks of checkouts of the sources, builds and tests of the projects in LHCb software stacks
on multiple architectures in a directed acyclic graph of dependencies, with the artifacts of each
task cached and reused whenever possible, and distributes the jobs to the workers in the build

farm. This work describes the implementation of the new system.

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:maciej.szymanski@cern.ch
mailto:marco.clemencic@cern.ch
https://pos.sissa.it/

Modernisation of the LHCb continuous integration build system Maciej Szymanski

1. Introduction

1.1 LHCD nightly builds

Nightly builds pipelines are a critical service for software development in LHCb, serving the
purpose of a centralised software quality monitoring hub. The system is used by developers and
maintainers to validate and test the ongoing development efforts.

LHCb software is composed of about 30 C++ interdependent projects. Due to this dependency
chain, we need to build a consistent stack of projects, which we call a slor. At the time of
writing, we build around 50 slots which correspond to different use cases, e.g. state-of-the-art
developments, back-ports of features and fixes to legacy versions of the software, specific merge
requests, simulation developments, etc. We include in the configuration of the slots also the versions
of external libraries.

The goal of the nightly builds pipelines is to checkout!, build and test the slots regularly (every
night, unless there are no updates with respect to the previous iteration) and on demand for merge
request validation workflows. The slots are built typically for several platforms, that is combinations
of architectures, operating systems, compilers and optimisation levels.

The main requirement for the nightly builds pipelines is to provide fast feedback on the impact
of their developments on builds and tests. Such feedback is presented in form of tables summarising
the state of builds and tests, accessible through web pages. The artifacts are also deployed to a
shared file system as soon as possible so that developers can use them for testing and further
development.

1.2 Motivation for modernisation

While the nightly build system used in LHCb so far [1, 2] still works, it reached the scalability
limits of its design. Moreover, the software development workflow implemented in preparation
for Run 3 and beyond increased significantly the load on the system, because of the on-demand
builds used to validate specific merge requests [3]. That evolution makes the system a continuous
integration one rather than just nightly.

One of the main limitations of the old system is that the build of a slot for a given platform is
run in a single task, which prevents us from parallelising builds when the dependency graph would
allow it and forces a full rebuild in case of infrastructure—related problems (e.g. network failures).
In addition, we often duplicate work because one cannot reuse artifacts between slots that share
parts of the stack definition.

Finally, the legacy LHCb nightly build system is based on Jenkins [7], but, because of our
specific needs, we do not use its features and we just rely on it as a way to execute tasks on remote
machines. Moreover, the way our Jenkins instance is deployed (via the OpenShift [8] service
provided by CERN IT [5]) seems to affect its performance and stability. Trying to extend the
nightly build system the way we wanted looked impossible on the old infrastructure, so we decided
to design the new continuous integration build system tuned to our use case.

1By checkout we mean a task getting the requested version of the project to be built. In practice, it is essentially git
clone and git fetch.

Modernisation of the LHCb continuous integration build system Maciej Szymanski

2. Design of the new continuous integration build system

The design of the new system revolves around two basic principles: maximise parallelism and
minimise work.

The key to improving the parallelism is to split the whole process into small independent tasks,
so where the old system used monolithic jobs (checkout and build), the new system relies on smaller
jobs, one per project instead of one for the whole slot. For example, instead of checking out all
projects in a slot one by one and waiting for completion before starting the build, we can check out
all projects at the same time and start the build of a project as soon as possible.

Minimising the work means in the first instance avoiding duplication and that can be done at
multiple levels. For example, multiple jobs are using the same version of a given project so it is
enough to run the corresponding checkout job only once and use its artifact multiple times. It is
also possible to reuse the checkout artifacts from one day to the next if there are no changes in
the code. Build artifacts can be reused too, although one has to take into account more factors to
identify equivalent build tasks, like the version of the project and its dependencies, the version of
the compiler and build tools, and details about the environment of the job.

The work to be undertaken is organised in a directed acyclic graph (DAG), where the nodes
are actual tasks (checkout, build, and test) and the edges denote dependencies between types of
the tasks (e.g. test of LHCb depends on build of LHCb) and the projects themselves (e.g. build of
LHCb depends on build of Gaudi). Once the workflow is resolved, the CPU-intensive workload is
distributed to a build farm.

The goal of the new system’s design is to achieve a simpler and cleaner solution compared to the
legacy one, intending to provide easy deployment for development and production environments.

3. Implementation

The language of choice for the CI system is Python thanks to its versatility, fast development
workflow, and rich collection of powerful open-source frameworks. A family of Python packages
with focused responsibilities was developed [9]. The high-level architecture of the system is shown
in Fig. 1.

3.1 Scheduler

We implemented the task scheduler, responsible to coordinate the execution of tasks taking
into account their dependencies, on top of the Luigi [10] framework. Luigi takes care of
dependency resolution, workload management and failure recovery policies, while we provide, via
the Python package 1b-nightly-scheduler, the description of the tasks (what they do) and
their dependencies taking into account that we share work between slots and that in our builds the
dependencies are dynamic (i.e. we know the interdependencies between projects only after the
checkout task, once we can inspect the project code).

3.2 Remote execution

The scheduler decides what to do and when, but the actual tasks are performed remotely on a
dedicated pool of machines. To run the job on remote resources, we implemented, in the Python

Modernisation of the LHCb continuous integration build system Maciej Szymanski

build summanes}

message queue brokerJ

()) T\ artifacts fepcswlory
slot configuration —Pi\web application)
L) - /

logging

Figure 1: High-level architecture of the new CI system

package 1b-nightly-rpc, an RPC (Remote Procedure Call) service using Celery [11] as the
transport layer. Celery itself is an abstraction layer on top of a messaging system, that in our
configuration is RabbitMQ [12] for initiating tasks and MySQL [13] as the results backend.

The RPC system we developed is responsible for routing the tasks to build machines depending
on the CPU architecture (e.g. x86_64 or aarch64, AVX2 or AVX512 capable CPUs), but it also
provides mechanisms to tune job priorities, retry policies and other parameters.

3.3 Functions

To separate business logic from infrastructure details, we developed a dedicated Python
package (1b-nightly-functions) to host the code for the actual checkout, build and test tasks.
The package relies on another Python package (1b-nightly-configuration) to decode and
interpret the configuration of a slot to know what to do in the specific tasks (e.g. which version of a
software project to check out or the details of the build environment). 1b-nightly-functions is
also responsible for the bookkeeping related to the tasks (uploading of artifacts and logs to dedicated
repositories, recording tasks states in a database, etc.) and for wrapping the execution of the tasks
in Singularity containers [15].

3.4 Support services

A number of related services exist to support the main functionality of the system. The tables
summarising the status of the builds and detailed reports on specific checkout, build and test tasks are
brought to the developers by a Flask-based [16] web frontend, which is also used as an entry point
to trigger builds on demand. The main backend database of the system is CouchDB database [17]
instance. Artifacts are stored on an S3 [18] server hosted at CERN (optionally with a Sonatype
Nexus Repository layer [19]) and deployed to the cvmfs distributed file system [20]. Thanks to the
recent improvements to cvifs publication rates [4], we can rely on the deployment of checkout and
build artifacts to cvmfs as a way to distribute them to all the machines in the build farm to be used
by the dependent build and test tasks. Logs from checkout, build, and test tasks as well as scheduler

Modernisation of the LHCb continuous integration build system Maciej Szymanski

and worker services are published to OpenSearch [21] using Fluent Bit [22], and are available
for inspection through the web application with OpenSearch Dashboards [21].

3.5 Deployment

All packages in the 1b-nightly family (see the dependency graph in Fig. 2) are managed
with the Python tool Poetry [25] and published to the Python Package Index [26] and the
conda-forge channel of the conda package manager [27].

Most services rely on the CERN IT-provided infrastructure, like DataBase on demand [6] or
OpenShift, but for the scheduler and the RPC workers we use dedicated machines where these
processes are run as systemd services.

‘ Ib-nightly-builds-frontend

Ib-nightly-db ﬂ}:bNighllyConf

Ib-nightly-configuration

Ib-nightly-scheduler Ib-nightly-functions

Ib-nightly-rpc ’ Ib-nightly-utils

Figure 2: The dependency graph of 1b-nightly packages.

The deployment of scheduler and RPC workers to the machines of the build farm is achieved
via conda environments installed on cvmfs, which allows us to also control the versions of auxiliary
applications needed for the tasks, like Git, CMake, Ninja etc.

It is possible to envisage a more organic deployment of the system on a Kubernetes [24]
cluster, however, it is beyond the scope of this contribution.

4. Summary

It is crucial to provide a robust continuous integration system for building LHCb software
stacks. The newly designed system is much more efficient and cleaner than the legacy one. Initial
studies show increased stability, throughput, and overall performance. This was achieved by splitting
and parallelising the tasks, as well as by caching and reusing the artifacts to save resources. The
new CI system provides better control than the previous system based on Jenkins. At the time of
writing, we are working on the commissioning of the system.

References

[1] M. Clemencic and B. Couturier, J. Phys. Conf. Ser. 513 (2014), 052007 doi:10.1088/1742-
6596/513/5/052007

[2] M. Clemencic and B. Couturier, J. Phys. Conf. Ser. 664 (2015) no.6, 062008 doi: 10.1088/1742-
6596/664/6/062008

Modernisation of the LHCb continuous integration build system Maciej Szymanski

[3] R. Currie, R. Matev and M. Clemencic, EP] Web Conf. 245 (2020), 05039
doi:10.1051/epjcont/202024505039

[4] E. Bocchi, J. Blomer, B. Couturier, C. Burr and D. van der Ster, EPJ Web Conf. 251 (2021),
02034 doi:10.1051/epjcont/202125102034

[5] A. Lossent, A. Rodriguez Peon and A. Wagner, J. Phys. Conf. Ser. 898, no.8, 082037 (2017)
doi:10.1088/1742-6596/898/8/082037

[6] R. G. Aparicio, D. Gomez and 1. Coterillo Coz, J. Phys. Conf. Ser. 396, 052034 (2012)
doi:10.1088/1742-6596/396/5/052034

[7] https://www.jenkins.io/

[8] https://www.redhat.com/en/technologies/cloud-computing/openshift
[9] https://gitlab.cern.ch/Ihcb-core/nightly-builds

[10] https://luigi.readthedocs.io/en/stable/

[11] https://docs.celeryq.dev/en/stable/

[12] https://www.rabbitmq.com/

[13] https://www.mysql.com/

[14] https://gitlab.cern.ch/lhcb-core/LHCbNightlyConf/
[15] https://apptainer.org/

[16] https://flask.palletsprojects.com

[17] https://couchdb.apache.org/

[18] https://aws.amazon.com/s3/

[19] https://www.sonatype.com/products/nexus-repository
[20] https://cvmfs.readthedocs.io/en/stable/

[21] https://www.opensearch.org/

[22] https://fluentbit.io/

[23] https://docs.docker.com/compose/

[24] https://kubernetes.io/

[25] https://python-poetry.org/

[26] https://pypi.org/

[27] https://conda.io/

[28] https://docs.gitlab.com/ee/ci/

	Introduction
	LHCb nightly builds
	Motivation for modernisation

	Design of the new continuous integration build system
	Implementation
	Scheduler
	Remote execution
	Functions
	Support services
	Deployment

	Summary

