PROCEEDINGS

OF SCIENCE

Software and computing challenges for a Muon Collider
Detector

Paolo Andreetto,”* Nazar Bartosik,” Massimo Casarsa,? Alessio Gianelle,” Karol
Krizka,* Donatella Lucchesi,”* Simone Pagan Griso“ and Lorenzo Sestini”
“Lawrence Berkeley National Laboratory, Berkeley, California, USA

bINFN Sezione di Padova, Padova, Italy

CINFN Sezione di Torino, Torino, Italy

4dINFN Sezione di Trieste, Trieste, Italy

¢ University of Padova, Padova, Italy

E-mail: paolo.andreetto@pd.infn.it

Studies of physics and detector performance of a possible experiment at a Muon Collider are
attracting a lot of interest in the High Energy Physics community. Projections show that high pre-
cision measurements are possible as well as very competitive searches for new physics. However,
the presence of the intensive beam-induced background, generated by the muon beams decay,
poses new computing and software challenges ranging from event simulation to reconstruction
algorithms. Moreover, an increasing number of collaborators around the world demands as well
an easy to maintain and flexible infrastructure distributed across several countries. This contribu-

tion will present the strategies adopted so far to cope with all the difficulties arising from such a
complex working environment.

415" International Conference on High Energy physics - ICHEP2022
6-13 July, 2022

Bologna, Italy

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/


mailto:paolo.andreetto@pd.infn.it
https://pos.sissa.it/

Software and computing challenges for a Muon Collider Detector Paolo Andreetto

1. Introduction

The Muon Collider project is an international collaboration of several research centers (Berke-
leyLab, CERN, Fermilab and INFN) aiming to design a detector suitable for the next generation of
high-energy colliders. One of the key aspects of the collaboration is the creation of the software
support required for all the activities of the project. In the following, a complete overview of that
kind of support is outlined, starting from the core part of any development, the framework, and
moving on, in the next step, to the description of all the resources available for the project. Since
many tasks related to the software and resource management are still work in progress, a thorough
list of ongoing activities is proposed in the last part.

2. The framework

The Muon Collider framework is an evolution of the ILC Software [1] suite. The ILC Software
distribution is a collection of tools and libraries for the simulation and reconstruction of events for
the CLIC project. DD4Hep [2] is the toolkit of ILC Software dedicated to the detector simulation;
it is built on top of GEANT4 and its modular architecture has been designed in order to simplify the
definition of a detector geometry. Reconstruction tasks are handled by Marlin [3]; it implements a
processing workflow of plug-ins, or processors, working on datasets whose format is compatible with
LCIO specification [4]. A rich set of processors is contained in the software distribution, covering
many aspects of the activity, starting from the detector digitization up to higher-level reconstruction
algorithms. Several processors integrate third-party libraries, like ACTS [5], Pandora Particle Flow
Analysis and FastJet.

The Muon Collider framework enhances the functionalities of the original software suite with
extensions specific for the Muon Collider detector. For what concerns the simulation stage, the
Muon Collider framework provides:

* the geometry description, in XML format, of the Muon Collider detector [6];

* an extension for DD4Hep that deals with a fine-grained description of the sensors which
compose the modules of the vertex detector.

For the reconstruction stage, the framework increases the original set of Marlin processors with:

* a processor that leverages the algorithms contained in the ACTS library to improve the
performances of the tracker reconstruction;

* aprocessor that implements a real time-dependent digitization for silicon sensors.
The framework also enhances the functionalities of original processors with:

* a new mechanism for an optimized overlay of large datasets of beam-induced background
(BIB) samples;

* new strategies for dealing with BIB samples in the conformal tracking algorithm, like regional
and cone tracking and several new filtering techniques for the tracking system, like double-
layer, cone and time filters;



Software and computing challenges for a Muon Collider Detector Paolo Andreetto

* an optimized general digitization process, that introduces the concept of "time window";

* the support for a new type of calorimeter (Crilin [7]) and new strategies for dealing with BIB
in the calorimeter cells, like BIB subtraction.

In order to guarantee the appropriate level of support to developers and final users the choice of
one or more reference platforms is crucial. For the Muon Collider framework the reference platform
is CentOS 8 Stream. The selected option must be considered a temporary solution since the stream
brand of the dismissed CentOS 8 distribution does not consider the publication of any release; it’s
just a continuous flow of package updates. Despite this, the selected solution is a good compromise:
it guarantees enough stability for a good level of support and the availability of updated tools and
libraries. For a final solution it is necessary to adapt to the guidelines from the major research
organizations like CERN and FermiLab.

The software management of the Muon Collider framework makes use of the development
tools supplied by the ILC software distribution. The tools guarantee a high level of portability
across different architectures since they implement a sand-box for the building process with few
dependencies from the system. The source code for all the components specific for the Muon
Collider detector is publicly distributed by the github service [8].

An essential step of the software management process is the selection of the technologies for
the final artifacts. For the Muon Collider software the container-ization with Docker [9] has been
considered the most versatile solution. A container encapsulates executables, libraries and any other
resources, with no dependency from the host system that operates the container itself. Any Docker
container is compatible with many high-level orchestration technologies, like docker-compose or
Kubernetes. The Docker container [10] produced by the building process is a complete CentOS 8
Stream installation with ILC Software and Muon Collider Software loaded inside and allows a user
to:

* run the simulation and reconstruction tools directly from the host system; with this option the
container can be considered as a package of executables;

* access the container and perform any action on the CentOS 8 Stream installation; with this
option the container can be seen as a virtual machine.

In both cases the data required as input of the simulation or reconstruction and the data produced
as output can be shared between the host system and the container through the functionalities of
the Docker storage system. The container-ization of the artifacts, with the structure describe above,
shows at least a major drawback: it’s not suitable for the realization of new components for the
framework. Even if it is possible, in principle, to install and setup a complete environment for code
development, it ends up to be a cumbersome solution in many cases.

The Docker container for the Muon Collider framework is also the input element for a continuous
integration process setup in the github service with workflows. A workflow is able to retrieve the
version of the container to certify and to apply a suite of functional tests, for both the simulation and
the reconstruction stage. The released Docker container is published by the DockerHub service, with



Software and computing challenges for a Muon Collider Detector Paolo Andreetto

amirror at CERN. The container is also converted in a format compatible with Apptainer/Singularity
[12], so that it is possible to deliver through different channels and simplify the adoption of the
artifact in many research contexts. The Singularity container is published by INFN-CNAF storage
system (see later) and by the LBNL in a public repository. One of the preferred channel distribution
for the HEP community is the CVMFS, a geographically distributed file system. At the current date
the Muon Collider Team is working on the publication of the Singularity container by the CERN
CVMFES.

3. Resources

The Muon Collider community can rely on a wide set of computational resources, spread across
many sites in different countries. As the time goes by, the number of members of the community
increases and each new member contributes with new computational efforts. Since the project does
not impose any constraint on the contributions, the Muon Collider group must face the challenge
of dealing with different technologies, like grid or cloud computing, HPC solutions, and integrate
them in a way that the final user does not feel the burden of accessing different technologies.

The first infrastructure available is CloudVeneto [13]. CloudVeneto is a cloud infrastructure
operated by the INFN site in Padova and the University of Padova. It’s built on top of Openstack®,
with the storage system based on Ceph, and makes available a bunch of Infrastructure-As-A-Service
solutions like virtual machines, virtual networks and volumes on demand. The infrastructure pro-
vides also some Platform-As-A-Service solutions, such that container-ization (Docker, Kubernetes),
cluster on demand (Spark, HTCondor), and Object Storage built on top of Ceph. The authorized
members of the community can access up to 200 virtual CPUs, with a limit of 100 virtual ma-
chines and 740 GB RAM, 90 Tbytes with volumes on demand and 75 Tbytes on the object storage.
CloudVeneto requires the registration at the INFN identity provider.

Muon Collider members have at their disposal two HTC solutions, both based on HTCondor
batch system. The first one is located at INFN-CNAF in Bologna. It makes available 6 computing
elements and a storage element, the StoRM service, with a grid-oriented standard interface (SRM)
and up to 150 Tbytes. Both the HTCondor cluster and the storage system requires the registration
in the Virtual Organization (VO) of Muon Collider. The security architecture of the VO is bound to
grid extensions of the X509 Public Key Infrastructure, the affiliation to the VO is possible only if
using accepted digital certificates. The second HPC solutions available is located at CERN. At the
current date, the batch system is still in pre-production state, the total amount of resources is not yet
completely defined. The CERN site supplies up to 100 Tbytes on the CERN EOS storage system.

The resources provided by the Muon Collider community are not restricted to hardware infras-
tructure, but include also scientific data. The community is actively working on the creation of a
central repository of datasets [14], containing samples from simulated physical processes, obtained
with different tools applied to different contexts. The datasets are published via the storage element
at INFN-CNAF site, the only requirement for accessing them is the user registration to the Muon
Collider VO. The user is also strongly encouraged to contact the Muon Collider group and clarify



Software and computing challenges for a Muon Collider Detector Paolo Andreetto

the usage scope of the required datasets, so the group can suggest the correct way to use the dataset
and avoid any possible misunderstanding. No other restrictions are applied at the moment.

Finally, the Muon Collider project provides the community with an aggregation service [15] for
any type of documentation. The service is based on the Confluence platform and provides all the
features expected for a collaboration site like web publishing, blog and document repositories. The
site is protected with a fine grained access control mechanism; the registration of a member is
required.

4. Future works

The entire software management process for the Muon Collider framework meets all the require-
ments for a production-ready software suite. Nevertheless, several aspects can be improved and
the Muon Collider working group is constantly investigating new solutions starting from the build
system up to the software distribution.

As mentioned before, a continuous integration system is running on the GitHub site and is able to
certify the quality of a release thanks to a powerful functional test suite. However, it is based on the
final artifact of the building process, it is necessary to extend the integration to the previous steps
and the intermediate artifacts. In this way, it is possible to test any component of the framework
separately, with both functional and unit tests. A new integration approach can simplify the creation
of new type of artifacts, like packages for each component (see later). The Free and Open Source
world offers many solutions with high levels of quality and support, like Jenkins or Travis. They
are all highly customizable and suitable for any kind of software management workflows. Some of
them are already available in many member sites of the Muon Collider collaboration, for example
Jenkins is supplied as a service by INFN or as a platform on demand at CERN. Unfortunately, the
build system inherited from the ILC Software toolkit is not completely adequate to be integrated
in one of the solution proposed; it encapsulates its own specific workflow so minor changes are
required in order to "open" the sandbox and inspect any step of the workflow.

Another activity, strongly related to the continuous integration task and still under investigation,
is the creation of new type of artifacts. The Muon Collider Team is preparing a distribution based
on RPM packages, specific for CentOS 8 Stream. At the current date, the distribution is not yet
complete, it covers the core engines for simulation and reconstruction, together the commonly used
processors and extensions. Any detail concerning the service dedicated to the publication of the
packages is still under discussion.

A major task scheduled for the future evolution of the Muon Collider framework is the integration
with the project Key4HEP [16]. The integration is critical as it could require, not only a re-design of
several components of the framework, but also a re-definition of the software management process.
The first point is out of the scope of this article, but for what concerns the second one the Muon
Collider team is evaluating the solutions proposed by the Key4HEP community. The community
provides a powerful toolkit, spack [17], that deals with any aspect of the software management
process. Since most part of the ILC Software distribution is already managed by Key4HEP with



Software and computing challenges for a Muon Collider Detector Paolo Andreetto

spack, the first step towards the integration consists on inserting the new components into the
Key4HEP build system. The adoption of the Key4HEP tools is mutually exclusive with any
solution based on ILC Software suite or applications like Jenkins or Travis.

References

[1] ILC Software, https://github.com/iLCSoft/ilcsoftDoc
[2] DD4Hep, https://dd4hep.web.cern.ch/dd4hep/
[3] Marlin, https://github.com/iLCSoft/Marlin

[4] F.Gaede et al., LCIO - A persistency framework for linear collider simulation studies,
arXiv:physics/0306114

[5] ACTS, https://acts.readthedocs.io/

[6] The Muon Collider detector
https://github.com/MuonColliderSoft/detector-simulation

[7] S.Ceravolo et al, Crilin: A CRystal calorlmeter with Longitudinal InformatioN for a future
Muon Collider, arXiv:2206.05838

[8] Muon Collider Sofware, https://github.com/MuonColliderSoft
[9] Docker, https://www.docker.com/

[10] Muon Collider artifacts at DockerHub,
https://hub.docker.com/repository/docker/infnpd/mucoll-ilc-framework

[11] Muon Collider Continuous Integration
https://github.com/kkrizka/MuonCollider-docker/actions

[12] Apptainer, previously Singularity, https://apptainer.org/
[13] CloudVeneto, http://userguide.cloudveneto.it/

[14] Muon Collider, Monte Carlo Simulated Samples,
https://confluence.infn.it/display/muoncollider/Monte+Carlo+Simulated+Samples

[15] The Muon Collider site https://confluence.infn.it/display/muoncollider
[16] Key4HEDP, https://key4hep.github.io/key4hep-doc/

[17] Spack, a package management tool for HEP, https://spack.readthedocs.io/

Acknowledgments

AIDAinnova This project has received support (funding) from the European Union’s Horizon
2020 Research and Innovation programme under Grant Agreement No 101004761.


https://github.com/iLCSoft/ilcsoftDoc
https://dd4hep.web.cern.ch/dd4hep/
https://github.com/iLCSoft/Marlin
https://arxiv.org/abs/physics/0306114
https://acts.readthedocs.io/en/latest/
https://github.com/MuonColliderSoft/detector-simulation
https://arxiv.org/abs/2206.05838
https://github.com/MuonColliderSoft
https://www.docker.com/
https://hub.docker.com/repository/docker/infnpd/mucoll-ilc-framework
https://github.com/kkrizka/MuonCollider-docker/actions
https://apptainer.org/
http://userguide.cloudveneto.it/en/latest/
https://confluence.infn.it/display/muoncollider/Monte+Carlo+Simulated+Samples
https://confluence.infn.it/display/muoncollider
https://key4hep.github.io/key4hep-doc/
https://spack.readthedocs.io/

	Introduction
	The framework
	Resources
	Future works

