PROCEEDINGS

OF SCIENCE

Reconstructing parton collisions with machine learning
techniques

G. F. R. Sborlini,*** D. F. Renteria-Estrada,’ R. J. Hernandez-Pinto¢ and P. Zurita?

“Departamento de Fisica Fundamental e IUFFyM, Universidad de Salamanca, E-37008 Salamanca, Spain

bEscuela de Ciencias, Ingenieria y Diseiio, Universidad Europea de Valencia, Paseo de la Alameda 7,
46010 Valencia, Spain

¢Facultad de Ciencias Fisico-Matemdticas, Universidad Autonoma de Sinaloa, Ciudad Universitaria, CP
80000, Culiacdn, Sinaloa, México

 Institut fiir Theoretische Physik, Universitiit Regensburg, 93040 Regensburg, Germany

E-mail: german.sborlini@desy.de

Having access to the parton-level kinematics is important for understanding the internal dynamics
of particle collisions. Here, we present new results aiming to an efficient reconstruction of
parton collisions using machine-learning techniques. By simulating the collider events, we related
experimentally-accessible quantities with the momentum fractions of the involved partons. We
used photon-hadron production to exploit the cleanliness of the photon signal, including up to
NLO QCD-QED corrections. Neural networks led to an outstanding reconstruction efficiency,
suggesting a powerful strategy for unveiling the behaviour of the fundamental bricks of matter in

high-energy collisions.
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1. Introduction and motivation

In current high-energy experiments, bunches of particles collide, allowing their fundamental
constituents to interact and produce new particles. The detectors identify the product of the
collisions, but it is not straightforward to understand what is really going on during the process.
In our recent work [1], we explore the application of Machine-Learning (ML) techniques to model
the partonic momentum fractions in terms of experimentally-accessible variables. In first place,
we calculated the differential hadronic cross-section for photon-hadron production including up
to Next-to-Leading Order (NLO) QCD and Leading-Order (LO) QED corrections. Using a code
based on Monte-Carlo (MC) integration [2, 3], we simulated the collisions and analyzed the events
to determine the correlations among measurable and partonic quantities. Then, we applied ML
algorithms that allow us to find the momentum fractions of the partons involved in the process in
terms of suitable combinations of the final state momenta.

We tested our proof-of-concept (PoC) with photon-hadron production at colliders because
the photon provides a clean probe to access the parton kinematics. The aim was to reconstruct
the momentum fraction x and z of the partons coming from the protons and undergoing the
fragmentation into a hadron, respectively. Due to the fact that parton kinematics are not physically-
defined (i.e. it is a model), we provided a quantitative estimation of their most probable values. For
this purpose, we trained Neural Networks (NN) to predict the MC partonic momentum fractions in
terms of external momenta.

2. Computational setup

In order to carry out the calculations, we relied on the well-known factorization theorem, which
implies that the cross-section is described by the convolution between PDFs, FFs and the partonic
cross-section. On top of that, we took advantage of the smooth-cone isolation [4] with the purpose
of avoiding the introduction of the photon fragmentation (whose accuracy is considerably lower
than the other FFs). So, our starting point for the cross-section calculation was

doH Hy—hy = Z / dxy dxz dz fr,ja, (X1, 11) fHyjay (X2, 11) Day/n (2, F) dGay ay—ayy » (1)
aiaxas

where we included up to NLO QCD and LO QED corrections. For the NLO part, we applied the
FKS method [5] to cancel the infrared singularities. Once the IR-finite NLO differential cross-
section was defined, we established a binning strategy to discretize the phase-space. In this way, we
managed to combine the real (2-to-3), virtual (2-to-2) and counter-terms (2-to-2) contributions by
defining bins in the measurable variables, i.e. (VEXP‘ = {15;, pF.117, 0", cos(¢™ — ¢”)}. Then, we
integrated the fully differential cross-section from Eq. (1) in each bin, obtaining o; for p; € (VEXP_.
This step was crucial, since the higher-order corrections to the cross-sections involve contributions
living in different phase-spaces.

3. Parton kinematics reconstruction

For the process that we considered, i.e. p + p — 7 + v, the partonic momentum fractions x1,
x2 and z are unambiguously fixed by external particle’s kinematics only at LO. When computing
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higher-order corrections, real radiation including extra particles must be included and momentum
conservation equations differs from LO kinematics. In order to obtain an approximation, we relied
on the LO expressions and we found a decent agreement with the MC momentum fractions, as
reported in Ref. [2]. However, in our recent work [1], we decided to tackle the problem by using
more flexible ML techniques.
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Figure 1: Comparison of the real momentum fractions (y-axis) and the reconstructed ones using Neural
Networks (x-axis), for x (left) and z (right), respectively.

The first step was to introduce the concept of effective momentum fractions at higher-orders.
Given a point in the grid, p; = {ﬁ;,ﬁ?, n”,q7",cos(¢p™ — ¢p?)} € (VEXP, we defined

do; do;
(x1,2)j = Z (Xl,z)i%(pj; (x1,2)), (2);= Z Zidizj(pﬁzi)’ 2

with the purpose of identifying a mean value for the MC momentum fractions associated to the sum
of all the real-emission topologies contributing to the same measurable final-state configuration
(i.e. the same point p ;). Then, we used ML to find mappings connecting the points in the grid with
the average value of the momentum fraction per bin, i.e.

XRec = Vixp — Xrear = {(x);},  Zrec = Vixp — Zrear = {(2);}- 3)

We explored different approaches, being NN among them. The flexibility of the NN provided the
best reconstruction with less constraints, as shown in the correlation plot in Fig. 1.
Finally, we studied the propagation of the scale uncertainties by defining different datasets,

varying the renormalization and factorization scales by a factor 2 up and down. With these datasets,

(&)
XREC?

grid. As reported in Ref.[1], the average reconstruction error turned out to be 7% for x and 5% for

we trained estimators (i.e. with £ the energy scale) and evaluated them in each point of the

z. In Fig. 2, we show the error bands in the correlation plots, for different ML approaches. The
bands are narrower for smaller values of x and z, since the cross-section is higher and the training
is more accurate.

4. Conclusions

In this work, we presented a proof-of-concept (PoC) to reconstruct parton-level kinematics by
using ML techniques. The results are in agreement with previous findings [2], but they required
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Figure 2: Correlation plots for x| (left) and z (right), with the associated error bands due to the propagation
of the scale uncertainties in the reconstruction. The Linear Method (LM), Gaussian Regression (GP) and
Neural Networks (NN) were considered.

much less human intervention. In particular, NN did not even need to select a function basis (which
is an important choice in other approaches, such as Gaussian Regression or the Linear Method).
Our results indicate that this PoC could be applied to other processes, and could be used to impose
stricter constraints for PDF/FF determination.
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