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Weanalyse the possibility that the darkmatter candidate, the dilaton, emerges from the approximate
conformal symmetry of the hidden scalar sector. The study includes the warm darkmatter scenario
and the Bose-Einstein condensation whichmay lead to massive Boson stars giving rise to detection
through the observation of the primary (direct) photons. We study the fluctuations of the scalar
particles density under the extreme conditions of phase transition. When the phase transition
approaches, the fluctuation of the particle density will increase sharply. Our results suggest
that the phase transition in the Boson stars may be identified through the fluctuation in yield of
primary photons induced directly by the conformal anomaly. The fluctuation rate of these photons
emitted by the hidden scalar particles has an intensive growth and becomes very large at the phase
transition. The dynamics and the properties of the dilatons at the temperature and the chemical
potential around their critical values may be the keys to understand the evolution of the Universe.
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1. Introduction

The breaking of the scale invariance at high enough temperature (T) and chemical potential
(µ) is an important issue in particle physics and cosmology since it is connected to the study of the
dark matter (DM) hidden sector. The critical phenomena, if occurred, may be considered through
the phase transition (PT) with the Bose-Einstein condensation (BEC) of the scalar fields. In this
case, the condensation takes place in a single zero mode that suggests the breaking of conformal
symmetry. In the conformal field theory (CFT) at the PT associated with the states which are
invariant under the conformal group, the restoration of the symmetry relevant to the Higgs boson
mass may be a cross-over [1]. The latter can influence the formation of the gravitationally bound
system, so-called "Boson stars" (BS), composed of the DM scalar fields under the repulsive forces
between them [2]. The gravitational instability of a spatially uniform state of the scalar fields
realised by the self-interactions of these fields, has been investigated in [3]. The dilaton in the form
of the scalar "glueball" field χ, the state of the gluon degrees of freedom (see, e.g., [4] and the
refs. therein) with the mass mχ of the order of the strong coupling scale Λ, is of the special interest
because of the possible condensation of the glueballs into the BS [5]. The condensation emerges
if the approximate conformal symmetry is broken spontaneously and the light pseudo-Goldstone
boson, the dilaton, may appear in the spectrum [6]. The χ glueball as the candidate for DM could
be cosmologically long lived if mχ < 104 TeV relevant to decay width of χ into two gravitons,
Γχ ∼ τ

−1
U (mχ/104TeV)5, with respect to the age of the Universe τU ∼ 1017 sec [7]. All the scales

in the particle physics and the cosmology may be the subjects of a light Higgs boson resulting from
the approximate conformal invariance of the standard model (SM) where the Higgs particle can
be viewed as a dilaton. In the approach to the approximate conformal symmetry, the processes in
the gluon and the electromagnetic (EM) sectors are governed by the conformal anomaly (CA). The
interactions between the dilaton with the gluon, the photon and the dark photon (DP) fields strength
tensors contribute much compared to that of the SM [8,9]. At finite temperatures, the thermal
fluctuations and the Bose-Einstein correlations of the direct photons may emerge [10]. The sources
of the photons in the vicinity of the PT are the dilatons.

2. The model

The dilaton field χ(x) can be introduced in the effective theory in terms of the dimensionless
fieldσ(x): χ(x) = fχ eσ(x), whereσ(x) transforms asσ(x) → σ(xeω)+ωwithω being an arbitrary
constant. When the scale symmetry is breaking down, the dilatation current Dµ = θµνxν is not
conserved, and the constant fχ is defined from the relation ∂µ〈0|Dµ(x)|χ(p)〉 = − fχ m2

χ e−i p x ,
where θµν is the energy-momentum tensor. The correlation length ξ ∼ m−1

χ is the indicator of the
singular behaviour of the observable quantity at the stage close to the critical point (CP), where
ξ(T → Tc) → ∞ at the critical temperature T = Tc when the PT approaches. The χ field may be
considered as the mediator between the conformal sector and the SM. At the critical temperature,
the role of the mediator disappears, the dilaton becomes massless, the conformal symmetry is
recovered, θµµ = 0.

Let us consider the system of almost ideal scalar (e.g., the glueball) gas. The partition
function for N scalar particles in the volume Ω at β = T−1 is ZN =

∑
...n f ... e−β

∑
f F( f )n f , where
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F( f ) = E( f )− µQ( f ) in the f -representation. Here, E( f ) is the energy, µ is the chemical potential
associated with Q( f ), the conserved charge with an average density 〈q〉 = Ω−1〈Q〉, n f is the
occupation number related to the quantum operators of the creation and the annihilation. The
thermal equilibrium in the volume Ω where the weak interplays between particles are supported by
large values of n f , may lead to BEC and the formation of the BS. At energies below the scale at
which the scale symmetry is breaking, the action for the fields χ(x) organised in the BS and coupled
to gravity is

S =
∫

d4x
√
−g

[
R

16πG
−

1
2
gµν∂µ χ∂ν χ − Kβ(χ; mχ, λ)

]
,

where R is the Ricci scalar, G is the gravitational constant; Kβ(χ; mχ, λ) is the scalar potential.
The repulsive self-interaction with λ in the scalar potential can lead to the compact dense BS.
Let us consider the function P(µ̄) = exp [−NΦ(µ̄)] which is the consequence of the power series
∼

∑∞
N=1 ZN µ̄

N = Π f [1 − µ̄e−F( f )β]−1 at fixed N which may be very large and where F( f ) ≥ 0.
Here, µ̄ = µ/µc, µc is the critical chemical potential. Below Tc, the temperature-dependent
potential

Φ(µ̄) ∼

∫
ln

[
1 − µ̄ e−F( f ) β

]
df (1)

gives the contribution from the glueballs to the total potential Kβ(χ; mχ, λ) running with µ̄

Kβ = β−1
∫ [

1 − µ̄ e−F( f )β
] d3 ®p
(2π)3

−
1
2

m2
χ χ

2 +
λ

4
χ4

(
ln

χ

fχ
−

1
4

)
+ λ

(
fχ
4

)2
.

At T > Tc, there is the gluon degrees of freedom contribution

Kg '
m2
g

π2 β2

∞∑
n=1

Cn

n
K2(nβmg), (2)

where the temperature-dependent phenomenological "quasi-gluon" mass mg = mg(β) = g(β)/β,
g(β) is the effective gauge coupling; the colour coefficients Cn are given in [11]; K2(x) is the Bessel
function. The quark contribution to the potential Kβ at T < Tc has the negative sign compared
to that of the gluon part. The physical result can restrict the number of quark flavours. At zero
chemical potential, the Kβ will be positive up to 3 light quark flavours if the "constituent" mass of
the "quasi-gluon" ∼ 0.5 mχ ' 0.85 GeV [12] and the "constituent" mass of the quark ∼ 0.3 GeV are
used. The gluons degrees of freedom contribution yields the first-order PT at the CP as found in the
SU(3) lattice calculations [13,14]. The gluons are forbidden below the critical temperature as the
coloured objects. The PT is related to the well-defined singularity with T and µ in the asymptotic
form ln ZN ' −N−1Φ(µ̄0) − N ln µ̄0 − ln 2

√
κ π N with κ = −Φ′(µ̄0) − Φ

′′(µ̄0). Here, µ̄0 is the
point at which the distribution P(µ̄)/µ̄N has a single minimum, that means µ̄0 corresponds to the
ground state at given µ̄. The µ̄0 can be estimated from the calculation of the sum∑

f

1
µ̄−1

0 eF( f )β − 1
= N (3)

up to singularity at N → ∞. At large number of the particles, the sum in (3) is correct in the case
of light glueballs with the mass ∼ O(Λ). It does not concern the phase diagram to scan the critical
point in QCD where the position of the CP is not clear.
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3. The thermal particle fluctuations

In the late Universe, the observed relic density of the DM can allow the dilaton to be almost
warm with the density ∼ exp(−Λ β) which follows down very rapidly. The dilaton mass is the
temperature - dependent smooth function governed by the integral in

mχ =
β

2

(
2 π2

v

)2/3 (∫ ∞

0

x2 dx
µ̄−1

0 e−µQβ ex2
− 1

)−2/3

.

At high enough T when µ̄0 eµQβ < 1, the singular behaviour of the correlation length comes
from ξ ∼ [µQ/(2 π)] (v B)2/3 ln−1 (

µ̄−1
0

)
, where v = Ω/N and B = 2,612... is the Riemann’s

zeta-function, ζ(3/2). The ξ increases toward infinity when µ̄0 → 1, however, at T << Tc the
fluctuations are characterised by the small correlation length when µ̄0 < 1. There is no PT caused
by developing of ξ if v is finite and small enough. Under the thermal influence, the non-monotonic
behaviour of ξ is assumed to be as an indicator of the PT (see also [15] for the case to search the
CP in QCD). When T lowers down below Tc, the only part of the total number of the dilatons
∼ (N/Ω)(βc/β)3/2 can be found in Ω. The rest one ∼ [1 − (βc/β)3/2] is the scalar condensate.

The observation of the particles fluctuation is related with the fluctuation of the dilaton mass.
For the compact BS of the local volume V < Ω defined by the geometry of the star, the number nV
of particles is

∑
1≤ j≤N n̂V (qj). The weight function n̂V (q) = 1 if q ∈ V , while n̂V (q) = 0 otherwise.

One can estimate the particle fluctuations through the standard event-by-event fluctuation of the
particle density in the form 〈(nV − 〈nV 〉)2〉, where 〈nV 〉 = V/Ω. In the vicinity of the CP, when
T → µQ/ln(1/µ̄0) and the PT approaches, we find

〈(nV − 〈nV 〉)2〉
〈nV 〉

' 1 +
4
√
π B

∫ ∞

0

x2 dx

(zc ex2
− 1)2

, (4)

where zc = µ̄−1
0 e−ac , ac ' µc QΛ (vB)2/3/(2 π). One can expect the sharp rising of the fluctuation

(4) when µ̄0 → 1 with v → 0. There are no dependence on the dilaton mass related to the critical
temperature by means of Tc = (2 π/mχ)(v B)−2/3.

4. The direct photons

In the effective theory, the interaction of the χ field with the SM is given by the LD ∼
(χ/ f )(θµµtr ee + θ

µ
µanom

), where θµµtr ee and θ
µ
µanom

are the energy-momentum trace contributions to
the SM sector ("tree") and the interactions with gluons, photons and DPs ("anom"), respectively.
The term ∼ θ

µ
µanom

is the source of the effective production of the dilatons due to gluon-gluon
fusion, and the direct production of the photons because of the dilatons decays. Since the EM and
the QCD interactions are embedded in the CFT, the only quarks lighter than the dilaton are included
in the calculations because of the conformal relation between the coefficients of the β-function for
heavy and light flavours at the scales aboveΛ. The emission of the photons depends on the anomaly
factor Fanom in the decay width related to the decay of the dilaton into two photons

Γ(χ → γγ) '

(
α Fanom

16 π3/2 fχ

)2
m3
χ, (5)
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where Fanom = −(2nL/3)(bEM/b
light
0 ), blight0 = −11 + (2/3)nL with nL being the number of

light quark flavours in β(g) = g3blight0 /(4π)2, g2 = 4παs, αs is the strong coupling constant and
bEM = −8/3 for 3 quark flavours. The dilaton mass fluctuates with the number of flavours Nf ,
m2
χ ' (1 − Nf /Nc

f
)Λ2 [16], where the number Nc

f
corresponds to the critical phase of the chiral

symmetry breaking. In the lattice model [17] for the glueballs with the SU(N) hidden sector at
large N , the parametrisation mχ = (a + b/N2)Λ has been used, where a < 1 and b ∼ O(1). The
self-coupling λ in the potential Kβ is λ ' 112, if one uses the glueball mass mχ = 1.7 GeV [11]
and the vacuum energy density ∼ λ( fχ/2)4 = 0.6 GeV f m−3 [18].

Because of the effective couplings of the dilatons with the gluons and the photons, the abundant
production of the dilatons due to gluon-gluon fusion and the decays of the dilatons to direct photons
are expected. The photons escape is the decisive way to observe and to differentiate the direct
photons and the ordinary photons in the decays of the secondary produced light hadrons. The
fluctuation rate of the direct photons escape is

rγγ = 1 + m3
π

(
6

Fanom

)2
ξ3, (6)

where mπ is the mass of the π-meson as the example. At the PT, there will be the abundant escape
of the photons as ξ(T → Tc) → ∞, Nf → Nc

f
and nL → 0. The critical value Nf = Nc

f
separates

the chiral symmetry breaking phase from that of the conformal one. The method is independent of
the values of the model parameters, where for an order of magnitude one can take fχ ' Λ and the
pion constant fπ ' 0.3Λ. The direct photon fluctuations rate (6) is an indicator whether the hidden
sector state is in the vicinity of the PT or not.

Finally, let us note that in the paper [7], the authors presented the direct point-like coupling
of the hidden sector associated with the scalar glueball field χ in the BS to the photons within the
hidden SU(N) gauge theory, where the value N is unspecified. The following transformation of
the interactions is used

1
M4

cut

HµνHµνFαβFαβ →
N m3

χ

M4
cut

χ FαβFαβ,

where Hµν and Fαβ are the strength tensors of the hidden gauge field of the group SU(N) and the
photon, respectively; Mcut is the cutoff scale. The decay rate of χ into two photons in the direct
interaction in the star is

Γ(χ → γγ) =
1

4π
mχN

2
(

mχ

Mcut

)8
, (7)

where for the self-interacting hidden matter χ, the N takes the maximal value in the interval
∼ [(0.1GeV/mχ)

3/4,2]. The combined result from the conformal anomaly (5) and the direct
interaction (7) gives the strongest constraints on the scale Mcut with the scalar mass in the MeV’s
scale. For mχ ∼ O(Λ) the cutoff Mcut has the following lower bounds in the weak scale: Mcut ≥ 3.4
GeV and Mcut ≥ 5.2 GeV for Λ = 330 MeV and Λ = 500 MeV, respectively.

5. Conclusions

To conclude, we investigated the possible evidence of the DM candidate from an approximate
conformal symmetry. The DM is the lightest hidden scalar field which is likely the dilaton or the

5
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glueball. The scalar fields could be warm and may have the feature of the BEC into the compact
massive Boson stars. In the vicinity of the PT, the correlation length ξ may be much larger than the
size of the interaction region. In this case, ξ should be as large as ξ ∼ N2/3 ln(µ̄−1

0 ) · 10−20 GeV−1

for N scalar particles with the mass mχ at µ̄0 → 1, where the maximal mass of the BS, MBS
max ∼√

λG−3/2 m−2
χ , is used [5]. The formation of the BS up the critical size and the maximal mass may

explode it into leptons via decays of the dark photons or may emit the direct photons that could
contribute to new sources of cosmic rays. The fluctuation rate rγγ grows up to become very large at
the PT. Both the PT and the CP have the very clear signature: the shower increasing of the photons
flow in the detector compared to that produced by light hadrons.
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