
P
o
S
(
C
D
2
0
2
1
)
0
3
6

HVP contribution to 𝒈 − 2

Martin Hoferichter∗

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern,
Sidlerstrasse 5, 3012 Bern, Switzerland

E-mail: hoferichter@itp.unibe.ch

Hadronic vacuum polarization currently yields the dominant uncertainty in the Standard-Model
prediction for the anomalous magnetic moment of the muon. While the phenomenological
approach is only as accurate as the hadronic cross sections used as input, there are several aspects
related to chiral dynamics that can be used as cross checks, including 𝜋𝜋 dynamics and the chiral
anomaly. In the talk I gave an overview over such aspects, including recent work to extrapolate
the isovector HVP contribution to unphysical quark masses.
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1. Introduction

Hadronic vacuum polarization (HVP) currently gives the biggest uncertainty in the Standard-
Model prediction for the anomalous magnetic moment of the muon [1–28]

𝑎SM
𝜇 = 116 591 810(43) × 10−11, (1)

i.e., when deriving the HVP contribution from 𝑒+𝑒− → hadrons cross-section data, the resulting
uncertainty in [1, 6–12]

𝑎HVP
𝜇

��
𝑒+𝑒− = 6 931(40) × 10−11 (2)

dominates the uncertainty quoted in Eq. (1), leading to a 4.2𝜎 difference to experiment [29–33]

𝑎
exp
𝜇 = 116 592 061(41) × 10−11. (3)

The consensus value (2) takes into account differences in methodology when combining data sets
(especially in the presence of tensions), includes constraints from analyticity and unitarity, and
reflects tensions among the data sets by an additional systematic error. Details can be found in
Ref. [1]; here, we concentrate on specific aspects of the HVP contribution that are related to chiral
dynamics, i.e., the role of the chiral anomaly in 𝑒+𝑒− → 3𝜋 and 𝑒+𝑒− → 𝜋0𝛾 in Sec. 2 and the use
of (unitarized) chiral perturbation theory (ChPT) to guide the chiral extrapolation of lattice-QCD
results in Sec. 3.1

2. Chiral anomaly

The 𝛾∗ → 3𝜋 matrix element can be decomposed as

⟨0| 𝑗𝜇 (0) |𝜋+(𝑝+)𝜋− (𝑝−)𝜋0(𝑝0)⟩ = −𝜖𝜇𝜈𝜌𝜎 𝑝 𝜈
+ 𝑝

𝜌
− 𝑝

𝜎
0 F (𝑠, 𝑡, 𝑢; 𝑞2), (4)

where the Mandelstam variables describe the momentum dependence of the final-state pions and
𝑞2 the invariant mass of the virtual photon. At low energies, the scalar function F (𝑠, 𝑡, 𝑢; 𝑞2) is
then constrained by the Wess–Zumino–Witten anomaly [43–47], with the chiral prediction

F (0, 0, 0; 0) = 𝐹3𝜋 =
1

4𝜋2𝐹3
𝜋

= 32.23(10) GeV−3. (5)

Here, chiral corrections related to the renormalization of the pion decay constant 𝐹𝜋 have already
been absorbed, while additional quark-mass renormalization increases the value at the physical
point by ≃ 7% [48, 49]. Such constraints have been implemented in fits to data, see Fig. 1, using
dispersive representations based on Khuri–Treiman methods [50] in which the chiral anomaly enters
as a subtraction constant and thereby adds information especially in the threshold region, where
data are scarce. Similar representations have been applied to the pion pole in hadronic light-by-light
scattering [21, 22, 51] and 𝜋0 → 𝑒+𝑒− [52, 53], and it is thus natural to ask how precisely the
corresponding low-energy theorems have been tested.

1We do not address the 2.1𝜎 tension between Eq. (2) and Ref. [34] (nor the one for the intermediate window [35–37]),
see Refs. [38–41] for the consequences of the corresponding change in HVP, but only study the role of chiral symmetry
in controlling the quark-mass dependence of the HVP contribution. Apart from the 𝜋𝜋 channel, two-pion dynamics also
play a role for the �̄�𝐾 channel, as a constraint on the isovector spectral function [42].
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Figure 1: Fits to the 𝑒+𝑒− → 3𝜋 (left) and 𝑒+𝑒− → 𝜋0𝛾 (right) cross section. Figures taken from Refs. [9, 12].

For 𝜋0 → 𝛾𝛾, the comparison between experiment, 𝐹𝜋𝛾𝛾 = 0.2754(21) GeV−1 [54], and the
leading chiral prediction, 𝐹𝜋𝛾𝛾 = 1/(4𝜋2𝐹𝜋) = 0.2745(3) GeV−1, demonstrates agreement at sub-
percent precision, to the extent that higher-order chiral corrections [55] are becoming difficult to
reconcile. In contrast, for the 3𝜋𝛾 anomaly only experimental tests at the level of 10% are currently
available [56, 57]. This situation could be improved by using the 𝜌(770) in 𝛾𝜋− → 𝜋−𝜋0 as a
lever [49, 58], to fully exploit the statistics from Primakoff measurements. More recently, also first
results in lattice QCD have become available [59–61], but the extraction 𝐹3𝜋 at the physical point
still requires an extrapolation in the pion mass [62, 63].

3. Chiral extrapolation

The chiral extrapolation of HVP results is part of the systematic error budget of any lattice
calculation, even close to the physical point some interpolation will almost certainly be required.
While the corresponding source of error does not appear dominant compared to, e.g., the continuum
limit, see Refs. [34, 64–73], the amount of effort invested in these calculations motivates a study
of the rigorous constraints by which such an extrapolation (or interpolation) in the pion mass can
be guided. Moreover, the dependence on the pion mass determines an important source of isospin
breaking [74], yielding a large negative effect that cancels against other positive corrections.

By far the biggest HVP contribution comes from the 𝐼 = 1 𝑢𝑑 isospin-symmetric correlator,
which phenomenologically corresponds to mainly 2𝜋 states, with the first inelastic admixture from
4𝜋. However, it was shown in Ref. [75] that a purely perturbative approach is not possible: the
ChPT expansion gives

𝑎𝐼=1
𝜇 =

𝛼2

24𝜋2

(
− log

𝑀2
𝜋

𝑚2
𝜇

− 31
6

+ 3𝜋2

√︄
𝑀2

𝜋

𝑚2
𝜇

+ O
(𝑀2

𝜋

𝑚2
𝜇

log2 𝑀
2
𝜋

𝑚2
𝜇

))
, (6)

in such a way that only for 𝑀𝜋 < 𝑚𝜇 a convergent behavior is expected (see, however, Ref. [76]
for the application of ChPT methods to finite-volume corrections). Accordingly, some information
on the 𝜌 meson needs to be provided, which can be achieved within the inverse-amplitude method
(IAM) combined with a dispersive representation of 2𝜋 intermediate states [77].
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Figure 2: Pion-mass dependence of �̄�HVP
𝜇 [𝜋𝜋] from the NLO (red) and NNLO (blue) IAM, for a normal

(left) and conformal (right) polynomial to describe inelastic effects. Figures taken from Ref. [77].

Starting point is a dispersive decomposition of the pion vector form factor [8, 41, 78, 79]

𝐹𝑉
𝜋 (𝑠) = Ω1

1(𝑠)︸︷︷︸
elastic 𝜋𝜋 scattering

× 𝐺𝜔 (𝑠)︸ ︷︷ ︸
isospin-breaking 3𝜋 cut

× 𝐺 in(𝑠)︸ ︷︷ ︸
inelastic effects: 4𝜋, . . .

, (7)

in which the Omnès factor Ω1
1(𝑠) accounts for the elastic 𝜋𝜋 scattering, the isospin-breaking 3𝜋 cut

can be ignored for the isospin-symmetric correlator, and 𝐺 in(𝑠) can be expanded in a (conformal)
polynomial. For the 𝜋𝜋 phase shift 𝛿1

1 encoded inΩ1
1(𝑠) [80] we employ IAM representations at one-

(NLO) and two-loop (NNLO) order [81], with parameters determined from a combined fit to lattice
QCD [82] and phenomenology [8]. The pion-mass dependence of 𝐺 in(𝑠) is further constrained
by the known two-loop expansion of the pion charge radius ⟨𝑟2

𝜋⟩ (and shape parameter 𝑐𝜋) [83].
With the only new low-energy constant 𝑟𝑟

𝑉1 = 2.0 × 10−5 estimated from resonance saturation
(in agreement with lattice results for ⟨𝑟2

𝜋⟩ [84, 85]), this leads to the prediction for the pion-mass
dependence shown in Fig. 2. In particular, the physical point is reproduced within uncertainties.

Based on this combined dispersive + IAM representation, there are two possible strategies for
application in lattice QCD:

1. Chiral low-energy constants as fit parameters:2 in this case, the full IAM representation
needs to be implemented, potentially combined with independent constraints from other
lattice calculations on 𝛿1

1, 𝐹𝜋 , and ⟨𝑟2
𝜋⟩.

2. Simple parameterizations: we studied to which extent the full IAM result can be reproduced
by simple functions in 𝑀𝜋 . This is only possible for sufficiently smooth functions, such as
the HVP integral or the space-like integrand. A purely empirical finding that emerges is that
a singularity as strong as 𝑀−2

𝜋 seems to be preferred in the interval [0.14, 0.25] GeV, which
may help inform lattice fits, but of course does not constitute an analytic approximation to
the full IAM nor reflect its true chiral behavior.

2To account for non-2𝜋 states, an additional polynomial contribution 𝑎HVP
𝜇 [𝑢𝑑, 𝐼 = 1, non-𝜋𝜋] = 𝜁 + 𝑀2

𝜋𝜉 will need
to be added, but the infrared singularities will be totally dominated by 2𝜋.
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4. Conclusions

Control over the HVP contribution is critical to match the full sensitivity of the Fermilab
experiment. In general, this requires a precise understanding of the resonance physics in the
𝑒+𝑒− → hadrons spectrum, but there are instances in which perturbative insights from chiral
symmetry can become advantageous. In this contribution, I discussed two such examples: the
role of the chiral anomaly in 𝑒+𝑒− → 3𝜋 and 𝑒+𝑒− → 𝜋0𝛾, and the use of unitarized ChPT,
in combination with dispersive techniques, to constrain the chiral extrapolation of the 𝐼 = 1 𝑢𝑑
isospin-symmetric correlator.
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