
P
o
S
(
R
e
g
i
o
2
0
2
1
)
0
3
5

Supersymmetric Cubic Interactions For Lower Spins From
“Higher Spin" Approach

I.L. Buchbinder,𝑎 V. Krykhtin,𝑎 M. Tsulaia𝑏,∗ and D. Weissman𝑏

𝑎Center of Theoretical Physics, Tomsk State Pedagogical University,
634041, Tomsk, Russia

𝑏Okinawa Institute of Science and Technology,
1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
E-mail: joseph@tspu.edu.ru, krykhtin@tspu.edu.ru, mirian.tsulaia@oist.jp,
dorin.weissman@oist.jp

We demonstrate how to reconstruct standard cubic vertices for 𝑁 = 1 supersymmetric Yang-Mills
and Supergravities using various techniques adopted for the description of cubic interactions
between higher spin fields.

RDP online PhD school and workshop "Aspects of Symmetry"(Regio2021),
8-12 November 2021
Online

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:joseph@tspu.edu.ru
mailto:krykhtin@tspu.edu.ru
mailto:mirian.tsulaia@oist.jp
mailto:dorin.weissman@oist.jp
https://pos.sissa.it/


P
o
S
(
R
e
g
i
o
2
0
2
1
)
0
3
5

Supersymmetric Cubic Interactions For Lower Spins From “Higher Spin" Approach M. Tsulaia

1. Introduction

The purpose of these notes is to demonstrate in detail various approaches of constructing
supersymmetric cubic interaction vertices for higher spin fields. To this end we reconstruct well
known cubic vertices for 𝑁 = 1 Super Yang-Mills and for linearized 𝑁 = 1 Supergravities. In
particular, we consider the field theoretic limits of the pure 𝑁 = 1, D = 10 supergravity [1]–[2], of
the 𝑁 = 1, D = 4 supergravity coupled with one chiral supermultiplet [3], and of the 𝑁 = 1, D = 6
supergravity coupled to one (1, 0) tensor supermultiplet [4]– [5]. The reason for choosing these
particular types of supergravity will become clear in the following. We shall also comment on a
generalization of these vertices to higher spin “Yang-Mills-like" and “Supergravity- like" vertices
[6], and on the higher spin generalizations of the corresponding free Lagrangians [7].

First, we shall describe the covariant BRST approach,1 which is similar to the one of Open
String Field Theory.2 However, unlike String Field Theory, the BRST approach to higher spin
fields is essentially a method for the construction of free and interacting Lagrangians using gauge
invariance as the only guiding principle, without any recourse to a world-sheet description.

As the first step in this approach, one constructs free Lagrangians invariant under linear gauge
transformations. Because of the presence of gauge symmetry, these Lagrangians contain both
physical and non-physical degrees of freedom. Some of the non-physical degrees of freedom are
removed using the equations of motion, the others are gauged away, and in the end one is left
only with physical polarizations. In general, these systems can contain bosonic and fermionic
fields, which are described by Young tableaux with mixed symmetries. However, at the free level
one can consider Lagrangians for just one or several (a finite number of) representations of the
Poincaré group [24]– [25]. A further requirement of supersymmetry singles out some particular
representations of the Poincaré group, both in bosonic and fermionic sectors, so the corresponding
bosonic and fermionic Lagrangians are related by supersymmetry transformations.

As the second step in the BRST approach, one promotes the original gauge symmetry to an
interacting level by deforming the Lagrangian and gauge transformation rules with nonlinear terms,
in such a way that the gauge invariance is kept order by order in the coupling constant. As in the
case of free Lagrangians, supersymmetry singles out some particular subclass of the cubic vertices,
which were found for non-supersymmetric systems [26]–[31].

To describe how this approach works on the examples of 𝑁 = 1 Super Yang-Mills and linearized
Supergravities, we start in Section 2 with a description of gauge invariant free Lagrangians. For the
massless vector field the corresponding Lagrangian is the standard (Maxwell) one. A gauge invariant
Lagrangian which contains the second rank symmetric massless tensor field as a physical component
describes spins 2 and 0 simultaneously. Then we present a similar gauge invariant description for
a massless spin-vector field which contains irreducible representations of the Poincaré group with
spins 3

2 and 1
2 .

In Section 3 we reformulate the results of Section 2 in the BRST approach. Then we impose an
additional requirement of 𝑁 = 1 supersymmetry on these systems. Using the technique developed
in the Open Superstring Field Theory [32] we show that 𝑁 = 1 supersymmetry requires some extra
fields (both physical and auxiliary) in the bosonic sector [7]. The obtained Lagrangian provides a

1See [8] for a review of the BRST approach and [9] –[22] for reviews of different approaches to higher spin theories.
2See e.g. [23] for a recent review.
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“unified" description of the above mentioned 𝑁 = 1 linearized supergravities in D = 4, 6 and 10
dimensions.

In Section 4 we turn to cubic interactions in the covariant formalism and present generic
equations which determine the cubic vertices, as well as solutions to these equations for three
massless bosonic fields with arbitrary spins [30], [33]. We also present the generic equations for
determining cubic vertices for two massless fermions and one massless boson [6].

In Section 5 we describe 𝑁 = 1 Super Yang-Mills in this formalism and in Section 6 we
consider cubic vertices for linearized supergravities. We comment on the higher spin generalization
of the vertices given in Sections 5 and 6. These cubic vertices [6] are covariant versions of the
vertices for two fermionic and one bosonic higher spin fields in arbitrary dimensions, first derived
in the light cone formalism [27].3

Finally, in Section 7 we describe the light cone approach to the construction of the cubic
vertices. In this approach one splits the generators of the Poincaré (super)group into dynamical
and kinematical operators. When using the field theoretic realization of the generators one takes
the kinematical operators to be quadratic in terms of superfields, whereas the dynamical generators
contain also cubic and higher order terms, i.e., cubic and higher order vertices. The requirement that
the Poincaré superalgebra stays intact after the nonlinear deformation of the dynamical operators
determines these vertices order by order in the coupling constant. We shall briefly review the
construction of [47] (see [48],[49] for the case of an arbitrary 𝑁) for arbitrary spin supermultiplets
in 𝑁 = 1, D = 1, and show how to obtain cubic vertices for four dimensional 𝑁 = 1 super
Yang-Mills and 𝑁 = 1 supergravity in the light cone gauge4 as a particular example.

2. Free Lagrangians

2.1 𝑠 = 1

Let us start with a massless vector field 𝜙𝜇 (𝑥) with a standard gauge transformation rule

𝛿𝜙𝜇 (𝑥) = 𝜕𝜇𝜆(𝑥) (1)

The gauge invariant Klein -Gordon and transversality equations for the massless vector field can be
written as

□𝜙𝜇 (𝑥) = 𝜕𝜇𝐶 (𝑥), 𝐶 (𝑥) = 𝜕𝜇𝜙𝜇 (𝑥) (2)

where we introduced an auxiliary field 𝐶 (𝑥), which transforms as

𝛿𝐶 (𝑥) = □𝜆(𝑥) (3)

The equations (2) can be obtained from the Lagrangian

L = −1
2
(𝜕𝜇𝜙𝜈) (𝜕𝜇𝜙𝜈) + 𝐶𝜕𝜇𝜙𝜇 − 1

2
𝐶2 (4)

After eliminating the field𝐶 (𝑥) via its own equation of motion one obtains the Maxwell Lagrangian
for the vector field 𝜙𝜇 (𝑥).

3Covariant cubic vertices with two fermions and electromagnetic and gravitational fields are given in [34]–[35].
Supersymmetric cubic interactions on flat and 𝐴𝑑𝑆 backgrounds are given in [36]–[43].

4The cubic vertices for D = 4, 𝑁 = 4 super Yang-Mills in the light cone formulation are given in [50]–[52].
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2.2 𝑠 = 2 and 𝑠 = 0

One can repeat a similar consideration for a second rank symmetric tensor field 𝜙𝜇𝜈 (𝑥). Now
the gauge invariant Klein-Gordon equation reads,

□𝜙𝜇𝜈 (𝑥) = 𝜕𝜇𝐶𝜈 (𝑥) + 𝜕𝜈𝐶𝜇 (𝑥) (5)

where the physical field 𝜙𝜇𝜈 (𝑥) and the auxiliary field 𝐶𝜇 (𝑥) transform as

𝛿𝜙𝜇𝜈 (𝑥) = 𝜕𝜇𝜆𝜈 (𝑥) + 𝜕𝜈𝜆𝜇 (𝑥), 𝛿𝐶𝜇 (𝑥) = □𝜆𝜇 (𝑥) (6)

In order to write gauge invariant transversality conditions one needs one more auxiliary field 𝐷 (𝑥),
which transforms as

𝛿𝐷 (𝑥) = 𝜕𝜇𝜆𝜇 (𝑥) (7)

Then the gauge invariant transversality equation is

𝜕𝜈𝜙𝜇𝜈 (𝑥) − 𝜕𝜇𝐷 (𝑥) = 𝐶𝜇 (𝑥) (8)

Finally, one can write a gauge invariant Klein-Gordon equation for the field 𝐷 (𝑥)

□𝐷 (𝑥) = 𝜕𝜇𝐶𝜇 (𝑥) (9)

and “integrate” the equations (5), (8) and (9) back into the Lagrangian

L = −1
2
(𝜕𝜇𝜙𝜈𝜌) (𝜕𝜇𝜙𝜈𝜌) + 2𝐶𝜇𝜕𝜈𝜙𝜇𝜈 − 𝐶𝜇𝐶𝜇 + (𝜕𝜇𝐷) (𝜕𝜇𝐷) + 2𝐷𝜕𝜇𝐶𝜇 (10)

Again, the only propagating degrees of freedom are the physical components of the field 𝜙𝜇𝜈 (𝑥).
Its longitudinal components and the fields 𝐶𝜇 (𝑥) and 𝐷 (𝑥) are either pure gauge or zero on shell.
Finally, since there is no zero trace condition involved, one obtains a gauge invariant description
simultaneously for a spin 2 field 𝑔𝜇𝜈 (𝑥) and for a scalar 𝜙(𝑥), both packed in the field 𝜙𝜇𝜈 (𝑥).

2.3 𝑠 = 3
2 and 𝑠 = 1

2

The Lagrangian describing only spin 1
2 field is simply

L = −𝑖 Ψ̄𝛾𝜇𝜕𝜇Ψ (11)

The next simplest example is a spin-vector field Ψ𝑎
𝜇 (𝑥), where ”𝑎” is a spinorial index (see appendix

A for the present conventions). Gauge invariant Dirac and transversality equations can be written
by introducing one auxiliary field 𝜒𝑎 (𝑥) as

𝛾𝜈𝜕𝜈Ψ𝜇 (𝑥) + 𝜕𝜇𝜒(𝑥) = 0 (12)

𝜕𝜇Ψ𝜇 (𝑥) + 𝛾𝜈𝜕𝜈𝜒(𝑥) = 0 (13)

The equations (12)– (12) are invariant under gauge transformations

𝛿Ψ𝜇 (𝑥) = 𝜕𝜇 𝜆
′(𝑥), 𝛿𝜒(𝑥) = −𝛾𝜈𝜕𝜈𝜆

′(𝑥) (14)

and can be obtained from the Lagrangian

L = −𝑖 Ψ̄𝜈𝛾𝜇𝜕𝜇Ψ𝜈 − 𝑖 Ψ̄𝜇𝜕𝜇𝜒 + 𝑖 𝜒̄𝜕𝜇Ψ𝜇 + 𝑖 𝜒̄𝛾𝜇𝜕𝜇𝜒 (15)

Similarly to the previous case, one can gauge away the auxiliary field 𝜒𝑎 (𝑥) and the non-physical
polarizations of Ψ𝑎

𝜇 (𝑥). Then, one has a gauge invariant description simultaneously of spins 3
2 and

1
2 , the latter being the gamma-trace of the field Ψ𝑎

𝜇 (𝑥).
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3. BRST invariant formulation

3.1 Set Up

A systematic way to obtain the systems described above is to use the BRST approach. Let us
introduce an auxiliary Fock space spanned by one set of creation and annihilation operators. The
commutation relations and the vacuum are defined in the usual way

[𝛼𝜇, 𝛼
+
𝜈] = 𝜂𝜇𝜈 , 𝛼𝜇 |0⟩𝛼 = 0 (16)

A vector |Φ⟩ in this Fock space is a series expansion in terms of the creation operators 𝛼+
𝜇. In the

rest of this paper we shall take the maximal number of these oscillators to be equal to two. Using
more than two oscillators will result in components of higher spin. The divergence, gradient and
d’Alembertian operators are realized as

𝑙 = 𝑝 · 𝛼, 𝑙+ = 𝑝 · 𝛼+, 𝑙0 = 𝑝 · 𝑝, (17)

with 𝑝𝜇 = −𝑖𝜕𝜇 and 𝐴 ·𝐵 ≡ 𝜂𝜇𝜈𝐴
𝜇𝐵𝜈 . The operators (17) form a simple algebra with only non-zero

commutator, being
[𝑙, 𝑙+] = 𝑙0 (18)

Following a standard procedure (see [8] for a review) for each operator 𝑙+, 𝑙 and 𝑙0 one introduces
ghosts 𝑐, 𝑐+, 𝑐0 of ghost number +1 and the corresponding momenta 𝑏+, 𝑏, 𝑏0 which have ghost
number −1 . These operators obey the anticommutation relations

{𝑏, 𝑐+} = {𝑏+, 𝑐} = {𝑏0, 𝑐0} = 1 (19)

We define the ghost vacuum as

𝑐 |0⟩𝑔ℎ. = 𝑏 |0⟩𝑔ℎ. = 𝑏0 |0⟩𝑔ℎ. = 0, (20)

the total vacuum being |0⟩ = |0⟩𝛼 ⊗ |0⟩𝑔ℎ.. Using the corresponding nilpotent BRST charge

𝑄 = 𝑐0𝑙0 + 𝑐𝑙+ + 𝑐+𝑙 − 𝑐+𝑐𝑏0, 𝑄2 = 0 (21)

this set up allows one to build gauge invariant free Lagrangians in a compact form,

L =

∫
𝑑𝑐0⟨Φ|𝑄 |Φ⟩ (22)

where the gauge transformation is given by

𝛿 |Φ⟩ = 𝑄 |Λ⟩ (23)

The Grassmann integration is carried out using the standard rule of∫
𝑑𝑐0 𝑐0 = 1 (24)

The requirement that the Lagrangian (22) has zero ghost number uniquely fixes the expansion of an
arbitrary vector |Φ⟩ in terms of the ghost variables. Noticing that the number operator

𝑁 = 𝛼+ · 𝛼 + 𝑐+𝑏 + 𝑏+𝑐 (25)

5
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commutes with the BRST operator (21), one has the following expansion for the case of the vector
field

|Φ⟩ = (𝜙𝜇 (𝑥)𝛼+
𝜇 − 𝑖𝐶 (𝑥)𝑐0𝑏

+) |0⟩ (26)

Since the BRST charge has the ghost number +1 and the vector |Φ⟩ has the ghost number zero, then
due to (22) the parameter of gauge transformations has the ghost number −1. Therefore

|Λ⟩ = 𝑖𝑏+𝜆(𝑥) |0⟩ (27)

Using the equations (22), (21) and (26) one can recover the Lagrangian (4) after performing the
normal ordering and integrating over 𝑐0. Similarly, using (21), (26) and (27) one recovers the gauge
transformation rules (1) and (3).

One can repeat the same procedure for the system described in the subsection 2.2. In particular,
the expansion of the vector |Φ⟩ and of the parameter of gauge transformations |Λ⟩ have the form

|Φ⟩ = (𝜙𝜇𝜈 (𝑥)𝛼+
𝜇𝛼

+
𝜈 − 𝑖𝑐0𝑏

+𝐶𝜇 (𝑥)𝛼+
𝜇 + 𝑐+𝑏+𝐷 (𝑥)) |0⟩ (28)

|Λ⟩ = 𝑖𝑏+𝜆𝜇 (𝑥)𝛼+
𝜇 |0⟩ (29)

Using this expansion one obtains the Lagrangian (10) and the gauge transformation rules (6) – (7).
The BRST formulation for fermions is slightly more complicated, because of the anticommuting

nature of the Dirac operator
𝑔0 = 𝑝 · 𝛾 (30)

As a result, one has to introduce a commuting ghost variable, which in turn leads to an infinite
expansion in its powers. One can, however, partially fix the BRST gauge to truncate the expansion
of the vector in the Fock space to a finite form and write the Lagrangian

L𝐹 =
1
√

2
𝑎⟨Ψ1 | (𝑔0)𝑎𝑏 |Ψ1⟩𝑏 + 𝑎⟨Ψ2 |𝑄̃𝐹 |Ψ1⟩𝑎 + (31)

+ 𝑎⟨Ψ1 |𝑄̃𝐹 |Ψ2⟩𝑎 +
√

2 𝑎⟨Ψ2 |𝑐+𝑐(𝑔0)𝑎𝑏 |Ψ2⟩𝑏

where
𝑄̃𝐹 = 𝑐+1 𝑙1 + 𝑐1 𝑙

+
1 (32)

One can check, that the Lagrangian (31) is invariant under the gauge transformations

𝛿 |Ψ1⟩𝑎 = 𝑄̃𝐹 |Λ′⟩𝑎

𝛿 |Ψ2⟩𝑎 = − 1
√

2
(𝑔0)𝑎𝑏 |Λ′⟩𝑏 (33)

and is equivalent to (15) with

|Ψ1⟩𝑎 = Ψ𝜇,𝑎 (𝑥)𝛼+
𝜇 |0⟩, |Ψ2⟩𝑎 = 𝑏+𝜒𝑎 (𝑥) |0⟩ (34)

The gauge transformations are obtained by taking the gauge parameter |Λ′⟩ to be of the form

|Λ′⟩𝑎 = 𝑖𝑏+𝜆′𝑎 (𝑥) |0⟩ (35)

As in the case of the bosonic fields, the dependence on 𝛼+
𝜇 and on ghost variables is uniquely fixed

by the choice that the field |Ψ1⟩𝑎 contains a maximal spin equal to 3
2 and the requirement that the

Lagrangian (31) has zero ghost number.
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3.2 Supersymmetry. Linearized Supergravities

Let us notice that the systems considered in the subsections 2.2 and 2.3 can not be connected
by supersymmetry transformations, because the fields 𝜙𝜇𝜈 (𝑥) and Ψ𝜇 (𝑥) have different numbers of
physical degrees of freedom on-shell.

In order to establish 𝑁 = 1 supersymmetry, one can take a formulation of the Open Superstring
Field Theory [32] as a hint and proceed as follows [7]. Consider two independent sets of𝛼-oscillators

[𝛼𝜇,𝑚, 𝛼
+
𝜈,𝑛] = 𝜂𝜇𝜈𝛿𝑚𝑛, 𝑚, 𝑛 = 1, 2 (36)

The corresponding divergence and gradient operators, as well as the ghost variables 𝑐±𝑚 and 𝑏∓𝑚 will
get the index ”𝑚” as well. Therefore, we have the algebra

[𝑙𝑚, 𝑙+𝑛] = 𝛿𝑚𝑛 𝑙0 (37)

{𝑏𝑚, 𝑐+𝑛} = {𝑏+𝑚, 𝑐𝑛} = 𝛿𝑚𝑛, {𝑏0, 𝑐0} = 1 (38)

We take the fields in the fermionic sector to contain only the first set of oscillators. In other words,
we consider the system described in the Subsection 2.3 without changes and in the corresponding
BRST formulation in the Section 3 we assume that all oscillators belong to the first set (𝑚 = 1).

On the other hand, the vectors in the Fock space in the bosonic sector contain both types of
oscillators. Taking physical component of the field |Φ⟩ to contain one oscillator of each type, we
get the following expansions

|Φ⟩ = (𝜙𝜇,𝜈 (𝑥)𝛼𝜇,+
1 𝛼

𝜈,+
2 − 𝐴(𝑥)𝑐+1𝑏

+
2 − 𝐵(𝑥)𝑐+2𝑏

+
1 (39)

+ 𝑖𝑐0𝑏
+
1𝐶𝜇 (𝑥)𝛼𝜇,+

2 + 𝑖𝑐0𝑏
+
2𝐸𝜇 (𝑥)𝛼𝜇,+

1 ) |0⟩.

and

|Λ⟩ = (𝑖𝑏+2𝜆𝜇 (𝑥)𝛼𝜇,+
1 + 𝑖𝑏+1𝜌𝜇 (𝑥)𝛼

𝜇,+
2 − 𝑐0𝑏

+
1𝑏

+
2𝜏(𝑥)) |0⟩. (40)

Using the corresponding nilpotent BRST charge

𝑄 = 𝑐0𝑙0 +
∑︁
𝑚=1,2

(𝑐𝑚𝑙+𝑚 + 𝑐+𝑚𝑙𝑚 − 𝑐+𝑚𝑐𝑚𝑏0), 𝑄2 = 0 (41)

it is straightforward to obtain the Lagrangian

𝐿𝐵 = −𝜙𝜇,𝜈□𝜙𝜇,𝜈 + 𝐵□𝐴 + 𝐴□𝐵 (42)
+𝐸𝜇𝜕𝜇𝐵 + 𝐶𝜈𝜕𝜇𝜙𝜈,𝜇 + 𝐶𝜈𝜕𝜈𝐴 + 𝐸𝜇𝜕𝜈𝜙𝜈,𝜇

−𝐵𝜕𝜇𝐸𝜇 − 𝜙𝜈,𝜇𝜕𝜇𝐶𝜈 − 𝐴𝜕𝜇𝐶
𝜇 − 𝜙𝜇,𝜈𝜕𝜇𝐸𝜈

+𝐶𝜇𝐶𝜇 + 𝐸𝜇𝐸𝜇 .

by plugging the expressions (39) and (41) into (22), performing the normal ordering of oscillators
and integrating over 𝑐0 according to (24). Similarly, one can find, that Lagrangian (42) is invariant

7
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under the gauge transformations

𝛿𝜙𝜈,𝜇 (𝑥) = 𝜕𝜇𝜆𝜈 (𝑥) + 𝜕𝜈𝜌𝜇 (𝑥),
𝛿𝐴(𝑥) = −𝜕𝜇𝜌𝜇 (𝑥) − 𝜏(𝑥),
𝛿𝐵(𝑥) = −𝜕𝜇𝜆𝜇 (𝑥) + 𝜏(𝑥),
𝛿𝐶𝜇 (𝑥) = −□𝜆𝜇 (𝑥) + 𝜕𝜇𝜏(𝑥), (43)
𝛿𝐸𝜇 (𝑥) = −□𝜌𝜇 (𝑥) − 𝜕𝜇𝜏(𝑥).

The Lagrangian (42) is analogous to the one given in the equation (10). However, the present
Lagrangian describes a physical field 𝜙𝜇,𝜈 (𝑥) with no symmetry between the indices 𝜇 and 𝜈. As
a result, the Lagrangian contains more auxiliary fields. In particular, the fields 𝐶𝜇 (𝑥) and 𝐸𝜇 (𝑥) in
(42) are analogous to the field 𝐶𝜇 (𝑥) in (10), and the fields 𝐴(𝑥) and 𝐵(𝑥) are analogous to the field
𝐷 (𝑥). Again, after eliminating the auxiliary fields after gauge fixing and using the equations of
motion one is left with only physical polarizations in the field 𝜙𝜇,𝜈 (𝑥). This means, that we have a
description of a spin 2 field 𝑔𝜇𝜈 (𝑥), of an antisymmetric second rank tensor 𝐵𝜇𝜈 (𝑥) and of a scalar
𝜙(𝑥), all contained in the field 𝜙𝜇,𝜈 (𝑥).

Finally, one can check that the total Lagrangian

𝐿𝑡𝑜𝑡. = −𝜙𝜇,𝜈□𝜙𝜇,𝜈 + 𝐵□𝐴 + 𝐴□𝐵 (44)
+𝐸𝜇𝜕𝜇𝐵 + 𝐶𝜈𝜕𝜇𝜙𝜈,𝜇 + 𝐶𝜈𝜕𝜈𝐴 + 𝐸𝜇𝜕𝜈𝜙𝜈,𝜇

−𝐵𝜕𝜇𝐸𝜇 − 𝜙𝜈,𝜇𝜕𝜇𝐶𝜈 − 𝐴𝜕𝜇𝐶
𝜇 − 𝜙𝜇,𝜈𝜕𝜇𝐸𝜈

+𝐶𝜇𝐶𝜇 + 𝐸𝜇𝐸𝜇

−𝑖 Ψ̄𝜈𝛾𝜇𝜕𝜇Ψ𝜈 − 𝑖 Ψ̄𝜇𝜕𝜇𝜒 + 𝑖 𝜒̄𝜕𝜇Ψ𝜇 + 𝑖 𝜒̄𝛾𝜇𝜕𝜇𝜒

being a sum of the Lagrangians (15) and (42), is invariant under the supersymmetry transformations
[7]

𝛿𝜙𝜈,𝜇 (𝑥) = 𝑖 Ψ̄𝜇 (𝑥)𝛾𝜈 𝜖, 𝛿𝐶𝜈 (𝑥) = −𝑖 𝜕𝜇 𝜒̄(𝑥)𝛾𝜇𝛾𝜈 𝜖, 𝛿𝐵(𝑥) = −𝑖 𝜒̄(𝑥) 𝜖, (45)

𝛿Ψ𝜇 (𝑥) = −𝛾𝜈𝛾𝜌𝜖 𝜕𝜈𝜙𝜌,𝜇 (𝑥) − 𝜖𝐸𝜇 (𝑥), 𝛿𝜒(𝑥) = −𝛾𝜈𝜖 𝐶𝜈 (𝑥) . (46)

Let us note that we have not encountered any restriction on the number of space-time dimensions
until now. The requirement that the algebra of supersymmetry transformations (45)–(46) closes on
shell singles out the number of space-time dimensions to be D = 3, 4, 6, or 10.

Decomposing the fields into irreducible representations of the Poincaré group as

𝜙𝜇,𝜈 =

(
𝜙 (𝜇,𝜈) − 𝜂𝜇𝜈

1
D 𝜙𝜌𝜌

)
+ 𝜙 [𝜇,𝜈 ] + 𝜂𝜇𝜈

1
D 𝜙𝜌𝜌 ≡ ℎ𝜇𝜈 + 𝐵𝜇𝜈 +

1
D 𝜂𝜇𝜈𝜑 (47)

and
𝜓𝑎
𝜇 = Ψ𝑎

𝜇 + 1
D (𝛾𝜇)𝑎𝑏 (𝛾𝜈)𝑏𝑐𝜓𝑐

𝜈 ≡ Ψ𝑎
𝜇 + 1

D (𝛾𝜇)𝑎𝑏Ξ𝑏 (48)

one obtains the following 𝑁 = 1 supermultiplets:

• In D = 4: a supergravity multiplet
(
𝑔𝜇𝜈 (𝑥), 𝜓𝑎

𝜇 (𝑥)
)

and a chiral multiplet (𝜙(𝑥), 𝑎(𝑥),Ξ(𝑥))
where 𝜕𝜇𝑎(𝑥) = 1

3!𝜖𝜇𝜈𝜌𝜎𝜕
𝜈𝐵𝜌𝜎 (𝑥).
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• In D = 6: a supergravity multiplet
(
𝑔𝜇𝜈 (𝑥), 𝐵+

𝜇𝜈 (𝑥), 𝜓𝑎
𝜇 (𝑥)

)
and a (1, 0) tensor multiplet(

𝜙(𝑥), 𝐵−
𝜇𝜈 (𝑥),Ξ(𝑥)

)
, where we decomposed 𝐵𝜇𝜈 (𝑥) into self-dual and anti self-dual parts.

• In D = 10: one irreducible supergravity multiplet.

Therefore, one can say, that the Lagrangian (44) gives an “uniform" description of various linearized
𝑁 = 1 supergravities. The case of D = 3 contains no massless propagating degrees of freedom
with spin 2, so we shall not consider it here.

Writing the supersymmetry transformations (45)–(46) in terms of auxiliary oscillators,

⟨0|𝛿 𝜙𝜇,𝜈 (𝑥) 𝛼𝜇

1 𝛼𝜈
2 = 𝑖 ⟨0|Ψ𝜇 (𝑥) 𝛼𝜇

1 (𝛾 · 𝛼2) 𝜖 (49)
⟨0|𝛿 𝐶𝜇 (𝑥) 𝛼𝜇

2 𝑏1 = −⟨0|𝜒(𝑥) 𝑔0 (𝛾 · 𝛼2) 𝜖 𝑏1

⟨0|𝛿 𝐵(𝑥) 𝑏1 𝑐2 = −𝑖 ⟨0|𝜒(𝑥) 𝑏1 𝑐2 𝜖

𝛿Ψ𝜇 (𝑥) 𝛼𝜇,+
1 |0⟩ = (−𝑖 𝑔0 (𝛾 · 𝛼2) 𝜖 𝜙𝜇,𝜈 (𝑥) 𝛼𝜇,+

1 𝛼
𝜈,+
2 − 𝜖 𝐸𝜇 (𝑥) 𝛼𝜇,+

1 ) |0⟩
𝛿 𝜒(𝑥) 𝑏+1 |0⟩ = −(𝛾 · 𝛼2) 𝜖 𝑏+1 𝐶

𝜇 (𝑥) 𝛼+
𝜇,2 |0⟩ (50)

one can see that supersymmetry is "generated" by the second set of oscillators (𝑚 = 2). In other
words, to obtain the 𝑁 = 1 supermultiplets one can start with the fermionic sector, which contains
only the first set (𝑚 = 1), then apply the transformations (49)–(50) and require the closure of SUSY
algebra.5

The description for the 𝑁 = 1 supersymmetric vector multiplet is similar. Taking the fields in
the bosonic and the fermionic sectors as

|Φ⟩ = (𝜙𝜇 (𝑥)𝛼𝜇,+
2 − 𝑖𝑐0𝑏

+
2𝐸 (𝑥)) |0⟩, |Ψ⟩ = Ψ(𝑥) |0⟩, (51)

one can check that the corresponding Lagrangian

L = (𝜕𝜇𝜙𝜈) (𝜕𝜇𝜙𝜈) − 2𝐸𝜕𝜇𝜙𝜇 + 𝐸2 − 𝑖 Ψ̄𝛾𝜇𝜕𝜇Ψ (52)

is invariant under the supersymmetry transformations

⟨0|𝛿 𝜙𝜇 (𝑥) 𝛼𝜇

2 = 𝑖 ⟨0|Ψ(𝑥) (𝛾 · 𝛼2) 𝜖 (53)
𝛿Ψ(𝑥) |0⟩ = (−𝑖 𝑔0 (𝛾 · 𝛼2) 𝜖 𝜙𝜇 (𝑥) 𝛼𝜇,+

2 − 𝜖 𝐸 (𝑥)) |0⟩

After eliminating the auxiliary field 𝐸 (𝑥) via its own equations of motion one obtains the standard
formulation of 𝑁 = 1 vector supermultiplet in D = 4, 6, or 10 with an on-shell supersymmetry.

5The same pattern persists for the higher spin supermultiplets: the fermionic sector contains only the first set of the
oscillators, while the bosonic sector contains the oscillators from the first set and at most one oscillator from the second
set, see [7] for the details.
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4. Cubic Interactions

4.1 Three bosons

In order to construct cubic interactions for the fields considered in the previous sections, 6 we
take three copies of the auxiliary Fock space and corresponding operators. The oscillators now
obey the commutation relations

[𝛼 (𝑖)
𝜇,𝑚, 𝛼

( 𝑗) ,+
𝜈,𝑛 ] = 𝛿𝑖 𝑗𝛿𝑚𝑛𝜂𝜇𝜈 , (54)

{𝑐 (𝑖) ,+𝑚 , 𝑏
( 𝑗)
𝑛 } = {𝑐 (𝑖)𝑚 , 𝑏

( 𝑗) ,+
𝑛 } = {𝑐 (𝑖)0,𝑚, 𝑏

( 𝑗)
0,𝑛} = 𝛿𝑖 𝑗𝛿𝑚𝑛 , (55)

𝑖, 𝑗 = 1, 2, 3, 𝑚, 𝑛 = 1, 2, 𝜇, 𝜈 = 0, ...,D − 1

Then, we can consider the cubic Lagrangian

L3𝐵,int =

3∑︁
𝑖=1

∫
𝑑𝑐

(𝑖)
0 ⟨Φ(𝑖) |𝑄 (𝑖) |Φ(𝑖)⟩ + (56)

+ 𝑔

(∫
𝑑𝑐

(1)
0 𝑑𝑐

(2)
0 𝑑𝑐

(3)
0 ⟨Φ(1) |⟨Φ(2) |⟨Φ(3) | |𝑉⟩ + ℎ.𝑐.

)
where 𝑔 is a coupling constant and

|𝑉⟩ = 𝑉 (𝑝 (𝑖)
𝜇 , 𝛼

(𝑖) ,+
𝜇,𝑚 , 𝑐

(𝑖) ,+
𝑚 , 𝑏

(𝑖) ,+
𝑚 , 𝑏

(𝑖)
0,𝑚) 𝑐

(1)
0 𝑐

(2)
0 𝑐

(3)
0 |0(1)⟩ ⊗ |0(2)⟩ ⊗ |0(3)⟩ (57)

where𝑉 is a function of the creation operators that is restricted as follows. An obvious requirement
is that 𝑉 must be Lorentz invariant. In order the Lagrangian to have the ghost number zero, the
function 𝑉 must have the ghost number equal to zero, and finally, the requirement of the invariance
of (56) under the non-linear gauge transformations

𝛿 |Φ(𝑖)⟩ = 𝑄 (𝑖) |Λ(𝑖)⟩ − (58)

− 𝑔

∫
𝑑𝑐

(𝑖+1)
0 𝑑𝑐

(𝑖+2)
0

(
(⟨Φ(𝑖+1) |⟨Λ(𝑖+2) | + ⟨Φ(𝑖+2) |⟨Λ(𝑖+1) |) |𝑉⟩

)
up to the first power in 𝑔, implies that the vertex |𝑉⟩ is BRST invariant:

(𝑄 (1) +𝑄 (2) +𝑄 (3) ) |𝑉⟩ = 0 (59)

The same condition guarantees that the group structure of the gauge transformations is preserved
up to the first order in 𝑔. Using momentum conservation

𝑝
(1)
𝜇 + 𝑝

(2)
𝜇 + 𝑝

(3)
𝜇 = 0 (60)

and the commutation relations (54), one can show that that the following expressions are BRST
invariant for any values of the spins entering the cubic vertex [30], [33]

K (𝑖)
𝑚 = (𝑝 (𝑖+1) − 𝑝 (𝑖+2) ) · 𝛼 (𝑖) ,+

𝑚 + (𝑏 (𝑖+1)
0 − 𝑏

(𝑖+2)
0 ) 𝑐 (𝑖) ,+𝑚 , (61)

6See [44], [45] for the details of construction for higher spin fields and [46] for the analogous construction in Open
Bosonic String Field Theory.
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O (𝑖,𝑖)
𝑚𝑛 = 𝛼

(𝑖) ,+
𝑚 · 𝛼 (𝑖) ,+

𝑛 + 𝑐
(𝑖) ,+
𝑚 𝑏

(𝑖) ,+
𝑛 + 𝑐

(𝑖) ,+
𝑛 𝑏

(𝑖) ,+
𝑚 , (62)

Z𝑚𝑛𝑝 = Q (1,2)
𝑚𝑛 K (3)

𝑝 + Q (2,3)
𝑛𝑝 K (1)

𝑚 + Q (3,1)
𝑝𝑚 K (2)

𝑛 , (63)

where
Q (𝑖,𝑖+1)

𝑚𝑛 = 𝛼
(𝑖) ,+
𝑚 · 𝛼 (𝑖+1) ,+

𝑛 + 1
2
𝑏
(𝑖) ,+
𝑚 𝑐

(𝑖+1) ,+
𝑛 + 1

2
𝑏
(𝑖+1) ,+
𝑛 𝑐

(𝑖) ,+
𝑚 . (64)

Before turning to a description of cubic vertices between bosonic and fermionic fields, let us
note that one can consider the cubic vertices between three bosonic fields obeying some off-shell
constraints. In particular, for the fields considered in Subsection 3.2 we shall impose off-shell
transversality conditions

𝜕𝜇𝜙𝜇,𝜈 (𝑥) = 𝜕𝜈𝜙𝜇,𝜈 (𝑥) = 0 (65)

These conditions in turn restrict the parameters of gauge transformations

𝜕𝜇𝜆𝜇 (𝑥) = 𝜕𝜇𝜌𝜇 (𝑥) = 0, □𝜆𝜇 (𝑥) = □𝜌𝜇 (𝑥) = 0, 𝜏(𝑥) = 0. (66)

The constraints can be rewritten as

𝑙
(𝑖)
1 |𝜙 (𝑖)⟩ = 𝑙

(𝑖)
2 |𝜙 (𝑖)⟩ = 0 , 𝑙

(𝑖)
1 |Λ(𝑖)⟩ = 𝑙

(𝑖)
2 |Λ(𝑖)⟩ = 𝑙

(𝑖)
0 |Λ(𝑖)⟩ = 0 (67)

As a result of these constraints, all auxiliary fields and the ghost dependence disappears in |Φ(𝑖)⟩
and the Lagrangian (56) reduces to

L3B,int =
∑︁

𝑖=1,2,3
⟨𝜙 (𝑖) |𝑙 (𝑖)0 |𝜙 (𝑖)⟩ + 𝑔

(
⟨𝜙 (1) | ⟨𝜙 (2) | ⟨𝜙 (3) | |𝑉⟩ + ℎ.𝑐

)
(68)

The formulation in terms of the constrained fields considerably simplifies the consideration of
supersymmetry, as we shall see below.

4.2 Two fermions and one boson

For cubic interactions between two fermionic and one bosonic fields the procedure is similar.
Again, in order to simplify the consideration one imposes an off-shell transversality constraint on
the physical field,

𝜕𝜇Ψ𝑎
𝜇 (𝑥) = 0 ⇔ 𝑙1 |Ψ⟩ = 0 (69)

thus putting to zero the auxiliary field 𝜒(𝑥) (see subsection 2.3). This constraint, in turn, restricts
the parameter of gauge transformations to

𝛾𝜇𝜕𝜇𝜆
′(𝑥) = 0 ⇔ 𝑔0 |Λ⟩ = 0 (70)

The corresponding cubic Lagrangian which describes interactions between two fermionic and one
bosonic fields has the form

L2F1B,int =

2∑︁
𝑖=1

𝑎⟨Ψ (𝑖) | (𝑔 (𝑖)
0 )𝑎𝑏 |Ψ (𝑎)⟩𝑏 + ⟨𝜙 (3) |𝑙 (3)0 |𝜙 (3)⟩ + (71)

+𝑔
(
⟨𝜙 (3) | 𝑎⟨Ψ (1) | 𝑏⟨Ψ (2) | |V⟩𝑎𝑏 + ℎ.𝑐

)
.
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The requirement that the Lagrangian (71) is invariant under the non-linear gauge transformations

𝛿 |𝜙 (3)⟩ = 𝑄̃
(3)
𝐵

|Λ(3)
𝐵

⟩ + (72)
+ 𝑔(𝑎⟨Ψ (1) | 𝑏⟨Λ𝐹

(2) | |W1,2
3 ⟩𝑎𝑏 + 𝑎⟨Ψ (2) | 𝑏⟨Λ(1)

𝐹
| |W2,1

3 ⟩𝑎𝑏),

𝛿 |Ψ (1)⟩𝑎 = 𝑄̃
(1)
𝐹

|Λ𝐹
(1)⟩𝑎 + (73)

+ 𝑔(𝑏⟨Ψ (2) | ⟨Λ(3)
𝐵

| |W2,3
1 ⟩𝑎𝑏 + ⟨𝜙 (3) | 𝑏⟨Λ

(2)
𝐹 | |W3,2

1 ⟩𝑎𝑏),

𝛿 |Ψ (2)⟩𝑎 = 𝑄̃
(2)
𝐹

|Λ𝐹
(2)⟩𝑎 + (74)

+ 𝑔(𝐴⟨𝜙 (3) | 𝐵
𝑏 ⟨Λ

(1)
𝐹

| |W3,1
2 ⟩𝑎𝑏 + 𝑏⟨Ψ (1) | ⟨Λ(3)

𝐵
| |W1,3

2 ⟩𝑎𝑏),

as well as the requirement of preservation of the group structure for the gauge transformations up
to the first power in the coupling constant 𝑔 imposes conditions on the vertices |V⟩𝑎𝑏 and |W⟩𝑎𝑏
[6], which are similar to (59).

The vertex |V⟩ is again defined by a Lorentz invariant, ghost number zero function of the
creation operators. Given |V⟩, gauge invariance of the Lagrangian (71) holds provided one can
find transformation vertices |W⟩ such that

(𝑔 (1)
0 )𝑎𝑏 |W2,3

1 ⟩𝑏𝑐 − (𝑔 (2)
0 )𝑐𝑏 |W1,3

2 ⟩𝑏𝑎 + 𝑄̃
(3)
𝐵

|V⟩𝑎𝑐 = 0 (75)

(𝑔 (1)
0 )𝑎𝑏 |W3,2

1 ⟩𝑏𝑐 + 𝑙
(3)
0 |W1,2

3 ⟩𝑎𝑐 + 𝑄̃
(2)
𝐹

|V⟩𝑎𝑐 = 0 (76)

(𝑔 (2)
0 )𝑎𝑏 |W3,1

2 ⟩𝑏𝑐 + 𝑙
(3)
0 |W2,1

3 ⟩𝑎𝑐 − 𝑄̃
(1)
𝐹

|V⟩𝑐𝑎 = 0 (77)

The preservation of the group structure leads to another set of equations. For consistency, there
must be some functions |X𝑖⟩ such that

𝑄̃
(2)
𝐹

|W2,3
1 ⟩𝑎𝑏 + 𝑄̃

(3)
𝐵

|W3,2
1 ⟩𝑎𝑏 − 𝑄̃

(1)
𝐹

|X1⟩𝑎𝑏 = 0 (78)

𝑄̃
(1)
𝐹

|W1,3
2 ⟩𝑎𝑏 + 𝑄̃

(3)
𝐵

|W3,1
2 ⟩𝑎𝑏 − 𝑄̃

(2)
𝐹

|X2⟩𝑎𝑏 = 0 (79)

𝑄̃
(1)
𝐹

|W1,2
3 ⟩𝑎𝑏 − 𝑄̃

(2)
𝐹

|W2,1
3 ⟩𝑏𝑎 − 𝑄̃

(3)
𝐵

|X3⟩𝑎𝑏 = 0 (80)

Note that the equations (75)-(80) should hold only when acting on fields and transformations
satisfying the constraints of equations (67), (69), and (70). The generalization to the unconstrained
case was written in [6].

5. 𝑁 = 1 Super Yang-Mills

Let us turn to particular examples.
For the case of Super Yang-Mills one introduces colour indices in the equations (56)–(58) and

in (71)–(74) and takes the fields in the bosonic and the fermionic sectors as

|Φ(𝑖)⟩𝐴 = (𝜙𝐴
𝜇 (𝑥)𝛼

𝜇 (𝑖) ,+
2 − 𝑖𝐸𝐴(𝑥)𝑐 (𝑖) ,+0 𝑏

(𝑖) ,+
2 ) |0(𝑖)⟩, (81)

|Ψ (𝑖)⟩𝑎,𝐴 = Ψ𝑎,𝐴(𝑥) |0(𝑖)⟩ (82)

12
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the only non-zero parameter of gauge transformations being

|Λ(𝑖)⟩𝐴 = 𝑖𝑏
(𝑖) ,+
2 𝜆𝐴(𝑥) |0(𝑖)⟩ (83)

The full interacting cubic Lagrangian is a sum of (68) and of7

Lint =

3∑︁
𝑖=1

𝐴⟨Ψ (𝑖) |𝑔 (𝑖)
0 |Ψ (𝑖)⟩𝐴 + 𝑔

(
𝐴⟨Ψ (1) |𝐵⟨Ψ (2) |𝐶 ⟨Φ(3) | |V⟩𝐴𝐵𝐶 + cyclic

)
(84)

The cubic interaction vertex between three bosons is given by the expression (63) with added colour
indices

|𝑉⟩𝐴𝐵𝐶 = − 𝑖

12
𝑓𝐴𝐵𝐶Z222 × 𝑐

(1)
0 𝑐

(2)
0 𝑐

(3)
0 |0(1)⟩ ⊗ |0(2)⟩ ⊗ |0(3)⟩ (85)

The cubic interaction vertex between two fermions with spins one-half and one boson with spin one
is

|V⟩𝑎𝑏𝐴𝐵𝐶 =
𝑖

3
𝑓𝐴𝐵𝐶 (𝛼 (3) ,+

2 · 𝛾)𝑎𝑏 |0(1)⟩ ⊗ |0(2)⟩ ⊗ |0(3)⟩ + cyclic (86)

The only non-trivial |W⟩ vertices in the solution of equations (75)–(77) are given by

|W2,3
1 ⟩𝑎𝑏𝐴𝐵𝐶 = |W1,3

2 ⟩𝑎𝑏𝐴𝐵𝐶 = 𝑓𝐴𝐵𝐶 𝐶𝑎𝑏𝑐+2 |0
(1)⟩ ⊗ |0(2)⟩ ⊗ |0(3)⟩ (87)

The vertex (86) enters the Lagrangian and determines the interaction between the vector field and
two fermions, whereas the vertices (87) express the nonlinear part of the gauge transformations.

After eliminating the auxiliary field 𝐸𝐴(𝑥) via its own equations of motion one obtains an
action for 𝑁 = 1 Super Yang-Mills up to the cubic order. Alternatively, one could have imposed
an off-shell transversality constraint on the physical field 𝜙𝐴

𝜇 (𝑥) similarly to how it was done for
the supergravity multiplets (see the discussion around the equations (65) – (68)). This would have
put an auxiliary field 𝐸𝐴(𝑥) equal to zero and restricted the parameter of gauge transformations as
□𝜆(𝑥) = 0.

A higher spin generalization is given in [6], by multiplying the vertex (86) with an arbitrary
function of the BRST invariant expressions (61)–(63) and then finding corresponding |W⟩ and |X⟩
vertices. These solutions are covariant versions of the vertices found in the light-cone formalism
[27].

Because of the cubic interactions, the supersymmetry transformations for the fermion in (53)
will be deformed with a nonlinear term

𝛿′ |Ψ (𝑖)⟩𝑎𝐴 = 𝑔 𝑓𝐴𝐵𝐶 × (88)
× 𝐵⟨𝜙 (𝑖+1) |𝐶 ⟨𝜙 (𝑖+2) | (𝛾𝜇𝜈)𝑎𝑏𝛼 (𝑖+1) ,+

2,𝜇 𝛼
(𝑖+2) ,+
2,𝜈 𝜖𝑏 |0(𝑖+1)⟩ ⊗ |0(𝑖+2)⟩ ⊗ |0(𝑖)⟩

being the standard supersymmetry transformations for the 𝑁 = 1 Yang-Mills supermultiplet. Let
us notice, however, that if one imposes the off-shell transversality condition on the vector field, the
supersymmetry transformations put the fields completely on shell. In this way one considers on-
shell cubic vertices, which transform into each other under linear supersymmetry transformations
(53).

7Note that in Section 4.2 we placed the boson in the third Fock space, whereas now we have three copies of the
boson’s Fock space in addition to three copies of the fermion’s. To write the interaction in a symmetric way, we introduce
a cyclic sum over the Fock space indices.
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6. 𝑁 = 1 Supergravities

In the following we show how we can write the cubic interaction vertices of 𝑁 = 1 supergravity
in D = 4, 6 and 10 dimensions. These can be compared with the full Lagrangians of the theories
which we include in Appendix B.

The cubic vertices for 𝑁 = 1 supergravities, which describe a nonlinear deformations of the
Lagrangian (44) can be divided into two types. The first type is universal in the same sense as is
the Lagrangian (44), i.e., the vertices have the same form in D = 4, 6 and 10. The second type of
the vertices are specific to particular dimensions.

In this section we consider the cubic interaction vertices of supergravities whose free versions
were written in Section 3.2. Namely, these are supergravity in D = 4 coupled to a chiral multiplet,
supergravity in D = 6 coupled to a (1, 0) tensor multiplet, and pure supergravity in D = 10.

In Subsection 6.1 we write the “universal” vertices, which are present in D = 4, 6, and 10.
In Subsections 6.2 and 6.3 we write specific boson-fermion-fermion vertices for D = 10 and 6,
respectively.

6.1 Universal vertices

Let us start with the first type of cubic vertices. We impose off-shell transversality constraints
on the physical fields 𝜙𝜇,𝜈 (𝑥) and Ψ𝑎

𝜇 (𝑥). Therefore, we have

|𝜙 (𝑖)⟩ = 𝜙𝜇,𝜈 (𝑥) 𝛼𝜇 (𝑖) ,+
1 𝛼

𝜈 (𝑖) ,+
2 |0(𝑖)⟩, |Ψ (𝑖)⟩𝑎 = Ψ𝑎

𝜇 (𝑥) 𝛼
𝜇 (𝑖) ,+
1 |0(𝑖)⟩ (89)

We take the cubic vertices for three bosons

− 2 𝑔 ⟨𝜙 (1) | ⟨𝜙 (2) | ⟨𝜙 (3) |Z111Z222 |0(1)⟩ ⊗ |0(2)⟩ ⊗ |0(3)⟩ (90)

where the expressions for Z𝑚𝑛𝑝 are given in (63). For two fermions and one boson we take the
vertex

𝑔 ⟨𝜙 (3) | 𝑎⟨Ψ (1) | 𝑏⟨Ψ (2) |Z111(𝛾 · 𝛼 (3) ,+
2 )𝑎𝑏 |0(1)⟩ ⊗ |0(2)⟩ ⊗ |0(3)⟩ + cyclic. (91)

which solves the equations (75)–(77) and (78)–(80) with

(W1,2
3 )𝑎𝑏 = 𝑐

(2) ,+
1 (𝛾 · 𝛼+

2 )
𝑎𝑏 (𝛼 (3) ,+

1 · 𝛼 (1) ,+
1 ) (92)

(W2,1
3 )𝑎𝑏 = 𝑐

(1) ,+
1 (𝛾 · 𝛼+

2 )
𝑎𝑏 (𝛼 (2) ,+

1 · 𝛼 (3) ,+
1 )

(W3,2
1 )𝑎𝑏 = − 𝑐

(2) ,+
1 (𝑝 (1) · 𝛾)𝑎𝑐 (𝛾 · 𝛼+

2 )
𝑐𝑏 (𝛼 (3) ,+

1 · 𝛼 (1) ,+
1 )

(W3,1
2 )𝑎𝑏 = −𝑐 (1) ,+1 (𝑝 (2) · 𝛾)𝑎𝑐 (𝛾 · 𝛼+

2 )
𝑐𝑏 (𝛼 (2) ,+

1 · 𝛼 (3) ,+
1 )

(W2,3
1 )𝑎𝑏 = −𝑐+2𝐶

𝑎𝑏Z111 + 𝑐
(3) ,+
1 (𝑝 (1) · 𝛾)𝑎𝑐 (𝛾 · 𝛼+

2 )
𝑐𝑏 (𝛼 (1) ,+

1 · 𝛼 (2) ,+
1 )

(W1,3
2 )𝑎𝑏 = 𝑐+2𝐶

𝑎𝑏Z111 + 𝑐
(3) ,+
1 (𝑝 (2) · 𝛾)𝑎𝑐 (𝛾 · 𝛼+

2 )
𝑐𝑏 (𝛼 (1) ,+

1 · 𝛼 (2) ,+
1 )

and

X𝑎𝑏
1 = 𝑐

(2) ,+
1 𝑐+2𝑏

(1) ,+
1 𝐶𝑎𝑏 (𝑝 (1) · 𝛼 (3) ,+

1 ) − 𝑐
(2) ,+
1 𝑐

(3) ,+
1 𝑏

(1) ,+
1 (𝑝 (1) · 𝛾)𝑎𝑐 (𝛾 · 𝛼+

2 )
𝑐𝑏

X𝑎𝑏
2 = −𝑐+2𝑐

(1) ,+
1 𝑏

(2) ,+
1 𝐶𝑎𝑏 (𝑝 (2) · 𝛼 (3) ,+

1 ) + 𝑐
(3) ,+
1 𝑐

(1) ,+
1 𝑏

(2) ,+
1 (𝑝 (2) · 𝛾)𝑎𝑐 (𝛾 · 𝛼+

2 )
𝑐𝑏

X𝑎𝑏
3 = −𝑐 (1) ,+1 𝑐

(2) ,+
1 𝑏

(3)+
1 (𝛾 · 𝛼+

2 )
𝑎𝑏 (93)
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The total Lagrangian, which is the sum of (68) and of

Lint =

3∑︁
𝑖=1

⟨Ψ (𝑖) |𝑔 (𝑖)
0 |Ψ (𝑖)⟩ + 𝑔

(
⟨Ψ (1) |⟨Ψ (2) |⟨Φ(3) | |V⟩ + cyclic

)
(94)

has the form

L = −𝜙𝜇,𝜈□𝜙𝜇,𝜈 + 48𝑔(𝜕𝜌𝜕𝜏𝜙𝜇,𝜈)𝜙𝜇,𝜈𝜙𝜌,𝜏 − 96𝑔(𝜕𝜌𝜕𝜏𝜙𝜇,𝜈)𝜙𝜇,𝜏𝜙𝜌,𝜈 (95)

− 1
2
Ψ̄𝜇𝛾𝜈𝜕𝜈Ψ𝜇 + 12𝑖𝑔𝜙𝜇,𝜈Ψ̄𝛼𝛾𝜈𝜕𝛼Ψ𝜇 − 6𝑖𝑔𝜙𝜇,𝜈Ψ̄𝛼𝛾𝜈𝜕𝜇Ψ𝛼

Let us note that the overall coefficients in the cubic vertices (90) and (91) are not fixed by the
requirement of the gauge invariance and this particular choice is dictated by the supersymme-
try transformations. However, due to the off-shell transversality conditions the supersymmetry
transformations

𝜙𝜈,𝜇 (𝑥) = 𝑖 Ψ̄𝜇 (𝑥)𝛾𝜈 𝜖, 𝛿Ψ𝜇 (𝑥) = −𝛾𝜈𝛾𝜌𝜖 𝜕𝜈𝜙𝜌,𝜇 (𝑥) (96)

put the fields completely on shell.
Similarly to the case of cubic vertices in Super Yang-Mills, the supergravity vertices of the first

type (91) can be generalized to higher spins [6] by multiplying them by an arbitrary function of the
BRST invariant expressions (61)–(63) and finding corresponding |W⟩ and |X⟩ vertices.

6.2 Vertices of D = 10 supergravity

In order to consider the cubic vertices of the second type it is easier to decompose the fermionic
fields into irreducible representations of Poincaré group according to (48). Then in ten dimensions
we have the vertex

⟨𝜙 (3) | 𝑎⟨𝜓 (1) | 𝑏⟨𝜓 (2) | |VJ⟩𝑎𝑏, (97)

where

V𝑎𝑏
J = (𝛾𝜇𝜏𝜎𝜆𝜈)𝑎𝑏𝛼𝜇 (1) ,+

1 𝛼
𝜈 (2) ,+
1 𝑝𝜏, (3)𝛼𝜎 (3) ,+

1 𝛼
𝜆(3) ,+
2 + (98)

+ (𝛼 (3) ,+
1 · 𝛾)𝑎𝑏 [(𝑝 (3) · 𝛼 (1) ,+

1 ) (𝛼 (2) ,+
1 · 𝛼 (3) ,+

2 ) − (𝑝 (3) · 𝛼 (2) ,+
1 ) (𝛼 (1) ,+

1 · 𝛼 (3) ,+
2 )] −

− (𝛼 (3) ,+
2 · 𝛾)𝑎𝑏 [(𝑝 (3) · 𝛼 (1) ,+

1 ) (𝛼 (2) ,+
1 · 𝛼 (3) ,+

1 ) − (𝑝 (3) · 𝛼 (2) ,+
1 ) (𝛼 (1) ,+

1 · 𝛼 (3) ,+
1 )] +

+ (𝑝 (3) · 𝛾)𝑎𝑏 [(𝛼 (1) ,+
1 · 𝛼 (3) ,+

2 ) (𝛼 (2) ,+
1 · 𝛼 (3) ,+

1 ) − (𝛼 (2) ,+
1 · 𝛼 (3) ,+

2 ) (𝛼 (1) ,+
1 · 𝛼 (3) ,+

1 )]

This vertex corresponds to the coupling of the field 𝐵𝜇𝜈 (𝑥) with two gravitini. The corresponding
W vertices have the form

(W2,1
3 )𝑎𝑏 =

1
2
𝑐
(1) ,+
1 𝛼

𝜈 (2) ,+
1 𝛼

𝜎 (3) ,+
1 𝛼

𝜆(3) ,+
2 (𝛾𝜎𝜆𝛾𝜈)𝑎𝑏 (99)

(W1,2
3 )𝑎𝑏 =

1
2
𝑐
(2) ,+
1 𝛼

𝜈 (1) ,+
1 𝛼

𝜎 (3) ,+
1 𝛼

𝜆(3) ,+
2 (𝛾𝜎𝜆𝛾𝜈)𝑎𝑏

(W3,1
2 )𝑎𝑏 = −𝑐 (1) ,+1 [1

2
(𝑝 (2) · 𝛾)𝑎𝑐𝛼𝜈 (2) ,+

1 𝛼
𝜎 (3) ,+
1 𝛼

𝜆(3) ,+
2 (𝛾𝜎𝜆𝛾𝜈)𝑐𝑏 +

+𝑝 (1) ,𝜇𝛼𝜈 (2) ,+
1 𝛼

𝜎 (3) ,+
1 𝛼

𝜆(3) ,+
2 (𝜂𝜇𝜈𝛾𝜆𝛾𝜈 − 𝜂𝜇𝜆𝛾𝜎𝛾𝜈 + 𝜂𝜇𝜈𝛾𝜎𝜆)𝑎𝑏]

(W3,2
1 )𝑎𝑏 = 𝑐

(2) ,+
1 [1

2
(𝑝 (2) · 𝛾)𝑏𝑐𝛼𝜈 (1) ,+

1 𝛼
𝜎 (3) ,+
1 𝛼

𝜆(3) ,+
2 (𝛾𝜎𝜆𝛾𝜈)𝑐𝑎 +

+𝑝 (2) ,𝜇𝛼𝜈 (1) ,+
1 𝛼

𝜎 (3) ,+
1 𝛼

𝜆(3) ,+
2 (𝜂𝜇𝜈𝛾𝜆𝛾𝜈 − 𝜂𝜇𝜆𝛾𝜎𝛾𝜈 + 𝜂𝜇𝜈𝛾𝜎𝜆)𝑏𝑎]
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The solution for the group structure equations includes

X𝑎𝑏
1 = −𝑏 (1) ,+

1 [𝑐 (3) ,+1 𝑐
(2) ,+
1 (𝛾 · 𝛼 (3) ,+

2 )𝑎𝑐 (𝛾 · 𝑝 (1) )𝑐𝑏 − 𝑐
(3) ,+
2 𝑐

(2) ,+
1 (𝛾 · 𝛼 (3) ,+

1 )𝑎𝑐 (𝛾 · 𝑝 (1) )𝑐𝑏]
X𝑎𝑏

2 = 𝑏
(2) ,+
1 [𝑐 (3) ,+1 𝑐

(1) ,+
1 (𝛾 · 𝛼 (3) ,+

2 )𝑎𝑐 (𝛾 · 𝑝 (2) )𝑐𝑏 − 𝑐
(3) ,+
2 𝑐

(1) ,+
1 (𝛾 · 𝛼 (3) ,+

1 )𝑎𝑐 (𝛾 · 𝑝 (2) )𝑐𝑏]
X𝑎𝑏

3 = 𝑏
(3) ,+
1 𝑐

(3) ,+
1 𝑐

(1) ,+
1 (𝛾 · 𝛼 (3) ,+

2 )𝑎𝑏 − 𝑏
(3) ,+
2 𝑐

(3) ,+
2 𝑐

(1) ,+
1 (𝛾 · 𝛼 (3) ,+

1 )𝑎𝑏 (100)

The remaining cubic vertices in D = 10 are those which correspond to the coupling of the
𝐵𝜇𝜈 (𝑥) to one gravitino and one dilatino,

⟨𝜙 (3) | 𝑎⟨𝜓 (1) | 𝑏⟨Ξ(2) | |VL⟩𝑎𝑏 , (101)

There are two such couplings. The first is

(VL1)𝑎𝑏 = (𝛾𝜇𝜈𝜏)𝑎𝑐𝑝𝜇, (3)𝛼𝜈 (3) ,+
1 𝛼

𝜏 (3) ,+
2 (𝛼 (1) ,+

1 · 𝛾)𝑐𝑏 (102)

The non-trivial W vertices are

(W2,1
3 )𝑎𝑏 = −𝑐 (1) ,+1 (𝛾𝜈𝜏)𝑎𝑏𝛼𝜈 (3) ,+

1 𝛼
𝜏 (3) ,+
2 (103)

(W3,1
2 )𝑎𝑏 = 𝑐

(1) ,+
1

[
(𝛾𝜈𝜏)𝑎𝑐𝛼𝜈 (3) ,+

1 𝛼
𝜏 (3) ,+
2 (𝑝2 · 𝛾)𝑐𝑏

]
The second vertex of this type is

(VL2)𝑎𝑏 = 𝛿𝑎𝑏 (𝛼 (3) ,+
1 · 𝛼 (3) ,+

2 ) (𝛼 (1) ,+
1 · 𝑝 (3) ) (104)

for which

(W2,1
3 )𝑎𝑏 = −1

2
𝑐
(1) ,+
1 𝐶𝑎𝑏𝛼

(3) ,+
1 · 𝛼 (3) ,+

2 (105)

(W3,1
2 )𝑎𝑏 =

1
2
𝑐
(1) ,+
1 (𝑝2 · 𝛾)𝑎𝑏𝛼 (3) ,+

1 · 𝛼 (3) ,+
2

For the last two vertices the solutions for the group structure equations are with |X𝑖⟩ = 0.

6.3 Vertices of D = 6 supergravity

Most of the vertices of D = 6 supergravity have already been described above. They include
the universal vertices of Subsection 6.1, as well as the vertices (102) and (104), which are both
present in D = 6.

The vertex that has a different form is the coupling of the 𝐵-field to two gravitini, which is now
given by

V𝑎𝑏 = (𝛾𝜏𝛾𝜇𝜈𝜌𝛾𝜆)𝑎𝑏𝛼𝜆(1) ,+
1 𝛼

𝜏 (2) ,+
1 𝑝𝜇 (3)𝛼𝜇 (3) ,+

1 𝛼
𝜈 (3) ,+
2 (106)

The corresponding W vertices have the form

(W2,1
3 )𝑎𝑏 = 𝑐

(1) ,+
1 𝛼

𝜇 (2) ,+
2 𝛼

𝜈 (3) ,+
1 𝛼

𝜌(3) ,+
1 (𝛾𝜈𝜌𝛾𝜇)𝑎𝑏 (107)

(W1,2
3 )𝑎𝑏 = 𝑐

(2) ,+
1 𝛼

𝜇 (2) ,+
1 𝛼

𝜈 (3) ,+
1 𝛼

𝜌(3) ,+
1 (𝛾𝜈𝜌𝛾𝜇)𝑎𝑏

(W3,1
2 )𝑎𝑏 = −𝑐 (1) ,+1

[
𝛼
𝜈 (3) ,+
1 𝛼

𝜌(3) ,+
2 (𝛾𝜈𝜌)𝑎𝑐𝑝𝜇 (2)𝛼𝜎 (2) ,+

1 (𝛾𝜇𝛾𝜎)𝑐𝑏 +
+2(𝑝 (1) · 𝛼 (2) ,+

1 )𝛼𝜈 (3) ,+
1 𝛼

𝜌(3) ,+
2 (𝛾𝜈𝜌)𝑎𝑏

]
(W3,2

1 )𝑎𝑏 = 𝑐
(2) ,+
1

[
𝛼
𝜈 (3) ,+
1 𝛼

𝜌(3) ,+
2 (𝛾𝜈𝜌)𝑎𝑐𝑝𝜇 (1)𝛼𝜎 (1) ,+

1 (𝛾𝜇𝛾𝜎)𝑐𝑏 +
+2(𝑝 (2) · 𝛼 (1) ,+

1 )𝛼𝜈 (3) ,+
1 𝛼

𝜌(3) ,+
2 (𝛾𝜈𝜌)𝑎𝑏

]
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with

X𝑎𝑏
1 = −𝑏 (1) ,+

1 [𝑐 (3) ,+1 𝑐
(2) ,+
1 (𝛾 · 𝛼 (3) ,+

2 )𝑎𝑐 (𝛾 · 𝑝 (1) )𝑐𝑏 − 𝑐
(3) ,+
2 𝑐

(2) ,+
1 (𝛾 · 𝛼 (3) ,+

1 )𝑎𝑐 (𝛾 · 𝑝 (1) )𝑐𝑏]
X𝑎𝑏

2 = 𝑏
(2) ,+
1 [𝑐 (3) ,+1 𝑐

(1) ,+
1 (𝛾 · 𝛼 (3) ,+

2 )𝑎𝑐 (𝛾 · 𝑝 (2) )𝑐𝑏 − 𝑐
(3) ,+
2 𝑐

(1) ,+
1 (𝛾 · 𝛼 (3) ,+

1 )𝑎𝑐 (𝛾 · 𝑝 (2) )𝑐𝑏]
X𝑎𝑏

3 = 2𝑏 (3) ,+
1 𝑐

(1) ,+
1 𝑐

(2) ,+
1 (𝛾 · 𝛼 (3) ,+

2 )𝑎𝑏 − 2𝑏 (3) ,+
2 𝑐

(1) ,+
1 𝑐

(2) ,+
1 (𝛾 · 𝛼 (3) ,+

1 )𝑎𝑏 (108)

solving the group structure equations.
There is also the coupling of 𝐵𝜇𝜈 to two dilatini,

⟨𝜙 (3) | 𝑎⟨Ξ(1) | 𝑏⟨Ξ(2) | |VX⟩𝑎𝑏, (109)

which is of the form
(VX)𝑎𝑏 = (𝛾𝜇𝜈𝜌)𝑎𝑏𝑝𝜇 (3)𝛼𝜈 (3) ,+

1 𝛼
𝜌(3) ,+
2 (110)

In this case all the W vertices are trivial.

7. Light Cone Formalism

In this Section we describe how to construct cubic vertices of D = 4 𝑁 = 1 super Yang-Mills
and Supergravity in the light cone approach following [47] (see also [53]–[54] for a brief review of
the light cone approach).

7.1 Set Up

To construct cubic interaction vertices in the light cone approach let us consider a field theoretic
realization of the D = 4 𝑁 = 1 super Poincaré algebra

[𝑄𝑎, 𝑄𝑏] = 1
2
(𝛾𝜇)𝑎𝑏𝑃𝜇 , (111)

[𝑄𝑎, 𝐽𝜇𝜈] = 1
2
(𝛾𝜇𝜈)𝑎𝑏𝑄𝑏 , (112)

[𝐽𝜇𝜈 , 𝑃𝜌] = 𝑃𝜇𝜂𝜈𝜌 − 𝑃𝜈𝜂𝜇𝜌 , (113)
[𝐽𝜇𝜈 , 𝐽𝜌𝜎] = 𝐽𝜇𝜎𝜂𝜈𝜌 − 𝐽𝜈𝜎𝜂𝜇𝜌 − 𝐽𝜇𝜌𝜂𝜈𝜎 + 𝐽𝜈𝜌𝜂𝜇𝜎 . (114)

Here 𝐽𝜇𝜈 are generators of Lorentz transformations, 𝑃𝜇 are generators of translations, and 𝑄𝑎

are generators of Supersymmetry transformations. These generators are split into kinematical and
dynamical generators. Kinematical generators preserve the Cauchy surface (the light cone) and are
quadratic in fields both on free and interacting levels. The other generators are dynamical and they
receive higher order corrections in fields. These corrections are determined from the requirement
that the Poincaré algebra is preserved at the interacting level.

We choose the four dimensional coordinates as

𝑥± =
1
√

2
(𝑥3 ± 𝑥0), 𝑧 =

1
√

2
(𝑥1 + 𝑖𝑥2), 𝑧 =

1
√

2
(𝑥1 − 𝑖𝑥2) (115)
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The coordinate 𝑥+ is treated as the time direction and 𝐻 = 𝑃− is the Hamiltonian8. The generators
of the super Poincaré algebra are split according to

kinematical : 𝑃+, 𝑃𝑧 , 𝑃 𝑧̄ , 𝐽𝑧+, 𝐽 𝑧̄+, 𝐽+−, 𝐽𝑧𝑧̄ , 𝑄+, 𝑄̄+, : 9 (116)
dynamical : 𝑃−, 𝐽𝑧−, 𝐽 𝑧̄−, 𝑄−, 𝑄̄− : 5 (117)

It is sufficient to construct the Poincare algebra at 𝑥+ = 0 and then evolve all the generators
according to ¤𝐺 = 𝑖[𝐻,𝐺]. The equations to be solved are

[𝑄−, 𝑃−] = [𝑄̄−, 𝑃−] = 0 , [𝐽𝑧,−, 𝑃−] = [𝐽 𝑧̄,−, 𝑃−] = 0 . (118)

The spectrum consists of bosonic 𝜙𝜆(𝑥) and fermionic 𝜓𝜆(𝑥) fields9 with the helicities 𝜆 = ±1,±2
for bosons, 𝜆 = ± 1

2 ,±
3
2 for fermions. It is convenient to work with partial Fourier transforms

𝜙𝜆(𝑥) = (2𝜋)−
3
2

∫
𝑒+𝑖 (𝑥

−𝛽+𝑧 𝑝̄+𝑧̄ 𝑝)𝜙𝜆( ®𝑝) 𝑑3𝑝 , (119)

𝜓𝜆(𝑥) = (2𝜋)−
3
2

∫
𝑒+𝑖 (𝑥

−𝛽+𝑧 𝑝̄+𝑧̄ 𝑝)𝜓𝜆( ®𝑝) 𝑑3𝑝 (120)

with 𝑑3𝑝 = 𝑑𝛽 𝑑𝑝 𝑑𝑝. The fields obey the following conjugation rules

𝜙
†
𝜆
( ®𝑝) = 𝜙−𝜆(− ®𝑝), 𝜓

†
𝜆
( ®𝑝) = 𝜓−𝜆(− ®𝑝) (121)

Introducing a Grassman momentum 𝑝𝜃 , one can combine the bosonic and fermionic fields into
superfields

Φ𝜆 = 𝜙𝜆 +
𝑝𝜃

𝛽
𝜓𝜆− 1

2
, Φ−𝜆+ 1

2
= 𝜓−𝜆+ 1

2
+ 𝑝𝜃𝜙−𝜆, (122)

with conjugation properties

Φ−𝜆 = 𝜙
†
−𝜆 +

𝑝𝜃

𝛽
𝜓
†
−𝜆+ 1

2
, Φ𝜆− 1

2
= −𝜓†

𝜆− 1
2
+ 𝑝𝜃𝜙

†
𝜆
, (123)

The equal time Poisson brackets between the fields

[𝜙𝜆( ®𝑝), 𝜙†𝜆′ ( ®𝑝
′)] = 𝛿𝜆,𝜆′

𝛿3( ®𝑝 − ®𝑝′)
2𝛽

, [𝜓𝜆( ®𝑝), 𝜓†
𝜆′ ( ®𝑝

′)] = 𝛿𝜆,𝜆′
𝛿3( ®𝑝 − ®𝑝′)

2
(124)

read in terms of the superfields as

[Φ𝜆( ®𝑝, 𝑝𝜃 ),Φ𝜆′ ( ®𝑝′, 𝑝′𝜃 )] = (−)
𝜖
𝜆+ 1

2 𝛿𝜆,𝜆′+ 1
2

𝛿3( ®𝑝 − ®𝑝′) 𝛿(𝑝𝜃 − 𝑝′
𝜃
)

2𝛽
(125)

where 𝜖𝜆 is 0 for integer 𝜆 and is 1 for half-integer 𝜆.
The kinematical generators, which are the same both on free and interacting levels have the

form
𝑃+ = 𝛽 , 𝑃𝑧 = 𝑝, 𝑃 𝑧̄ = 𝑝, 𝐽𝑧+ = −𝛽 𝜕

𝜕𝑝
, 𝐽 𝑧̄+ = −𝛽 𝜕

𝜕𝑝
, (126)

8Note that 𝛽 is used instead of 𝑝+ in order to simplify the form of the equations.We shall also put 𝑥+ = 0 for now on.
9In this Section, unlike the previous ones, the index 𝜆 denotes a helicity of a field, rather than its Lorentz index.
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𝐽−+ = − 𝜕

𝜕𝛽
𝛽 − 1

2
𝑝𝜃

𝜕

𝜕𝑝𝜃

+ 1
2
𝜖𝜆, 𝐽𝑧𝑧̄ = 𝑝𝜕𝑝 − 𝑝

𝜕

𝜕𝑝
+ 𝜆 − 𝑝𝜃

𝜕

𝜕𝑝𝜃

𝑄+ = (−) 𝜖𝜆𝛽 𝜕

𝜕𝑝𝜃

, 𝑄̄+ = (−) 𝜖𝜆 𝑝𝜃

The dynamical generators at the free level are

𝐻2 = − 𝑝𝑝

𝛽
, (127)

𝐽𝑧−2 = − 𝜕

𝜕𝑝

𝑝𝑝

𝛽
+ 𝑝

𝜕

𝜕𝛽
−

(
𝜆 − 1

2
𝑝𝜃

𝜕

𝜕𝑝𝜃

)
𝑝

𝛽
+

(
1
2
𝑝𝜃

𝜕

𝜕𝑝𝜃

− 1
2
𝜖𝜆

)
𝑝

𝛽

𝐽 𝑧̄−2 = − 𝜕

𝜕𝑝

𝑝𝑝

𝛽
+ 𝑝

𝜕

𝜕𝛽
+

(
𝜆 − 1

2
𝑝𝜃

𝜕

𝜕𝑝𝜃

)
𝑝

𝛽
+

(
1
2
𝑝𝜃

𝜕

𝜕𝑝𝜃

− 1
2
𝜖𝜆

)
𝑝

𝛽

𝑄−
2 = (−) 𝜖𝜆 𝑝

𝛽
𝑝𝜃

𝑄̄−
2 = (−) 𝜖𝜆 𝑝 𝜕

𝜕𝑝𝜃

At the level of cubic interactions one assumes the following expansion for the dynamical generators

𝐻3 = 𝐻2 +
∫

𝑑Γ[3] Φ
𝜆1𝜆2𝜆3
𝑞1𝑞2𝑞3 ℎ

𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

(128)

𝑄−
3 = 𝑄−

2 +
∫

𝑑Γ[3] Φ
𝜆1𝜆2𝜆3
𝑞1𝑞2𝑞3 𝑞

𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

𝑄̄−
3 = 𝑄̄−

2 +
∫

𝑑Γ[3] Φ
𝜆1𝜆2𝜆3
𝑞1𝑞2𝑞3 𝑞

𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

𝐽𝑧−3 = 𝐽𝑧−2 +
∫

𝑑Γ[3] ×

×
Φ𝜆1𝜆2𝜆3

𝑞1𝑞2𝑞3 𝑗
𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

− 1
3

©­«
3∑︁

𝑘=1

𝜕Φ
𝜆1𝜆2𝜆3
𝑞1𝑞2𝑞3

𝜕𝑞𝑘

ª®¬ ℎ𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

− 1
3

©­«
3∑︁

𝑘=1

𝜕Φ
𝜆1𝜆2𝜆3
𝑞1𝑞2𝑞3

𝜕𝑞𝜃,𝑘

ª®¬ 𝑞𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3


𝐽 𝑧̄−3 = 𝐽 𝑧̄−2 +

∫
𝑑Γ[3] ×

×
Φ𝜆1𝜆2𝜆3

𝑞1𝑞2𝑞3 𝑗
𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

− 1
3

©­«
3∑︁

𝑘=1

𝜕Φ
𝜆1𝜆2𝜆3
𝑞1𝑞2𝑞3

𝜕𝑞𝑘

ª®¬ ℎ𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

+ 1
3

( 3∑︁
𝑘=1

𝑞𝜃,𝑘

𝛽𝑘

)
Φ

𝜆1𝜆2𝜆3
𝑞1𝑞2𝑞3 𝑞

𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3


where Φ𝜆1𝜆2𝜆3

𝑞1𝑞2𝑞3 ≡ Φ
𝜆1
𝑞1Φ

𝜆2
𝑞2Φ

𝜆3
𝑞3 and

𝑑Γ[3] = (2𝜋)3
3∏

𝑘=1

𝑑3𝑞𝑘

(2𝜋) 3
2
𝛿3

( 3∑︁
𝑖=1

𝑞𝑖

) 3∏
𝑙=1

𝑑𝑞𝜃,𝑙 𝛿
©­«

3∑︁
𝑗=1

𝑞𝜃, 𝑗
ª®¬ (129)

is an integration measure.

7.2 D = 4, 𝑁 = 1 Super Yang Mills and Pure Supergravity

The cubic vertices which are present in the interaction part of dynamical generators (128) are
determined from the requirement of preservation of the algebra (111). A solution which contains
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the 𝑁 = 1 Super Yang Mills and Supergravity vertices has the form [47]

ℎ
𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

= 𝐶𝜆1𝜆2𝜆3 (P)𝑀𝜆+1
3∏
𝑖=1

𝛽
−𝜆𝑖− 1

2 𝜖𝜆𝑖
𝑖

+ 𝐶
𝜆1𝜆2𝜆3 (P)−𝑀𝜆− 1

2P𝜃

3∏
𝑖=1

𝛽
𝜆𝑖− 1

2 𝜖𝜆𝑖
𝑖

(130)

𝑞
𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

= −𝐶𝜆1𝜆2𝜆3 (P)𝑀𝜆P𝜃

3∏
𝑖=1

𝛽
−𝜆𝑖− 1

2 𝜖𝜆𝑖
𝑖

(131)

𝑗
𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

= 2𝐶𝜆1𝜆2𝜆3 (P)𝑀𝜆 𝜒

3∏
𝑖=1

𝛽
−𝜆𝑖− 1

2 𝜖𝜆𝑖
𝑖

(132)

and
𝑀𝜆 = 𝜆1 + 𝜆2 + 𝜆3, 𝜆1 = 𝑠1 −

1
2
, 𝜆2 = 𝑠2 −

1
2
, 𝜆3 = −𝑠3 (133)

In these equations 𝐶𝜆1𝜆2𝜆3 , 𝐶
𝜆1𝜆2𝜆3 are coupling constants and

P =
1
3
[(𝛽1 − 𝛽2)𝑝3 + (𝛽2 − 𝛽3)𝑝1 + (𝛽3 − 𝛽1)𝑝2] , (134)

P𝜃 =
1
3

[
(𝛽1 − 𝛽2)𝑝𝜃,3 + (𝛽2 − 𝛽3)𝑝𝜃,1 + (𝛽3 − 𝛽1)𝑝𝜃,2

]
, (135)

𝜒 = 𝛽1(𝜆2 − 𝜆3) + 𝛽2(𝜆3 − 𝜆1) + 𝛽3(𝜆1 − 𝜆2) . (136)

The momenta 𝛽𝑖 , 𝑝𝑖 , 𝑝𝑖 and 𝑝𝜃,𝑖 obey the conservation properties as in (60). The vertices 𝑞𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

and 𝑗
𝑞1𝑞2𝑞3
𝜆1𝜆2𝜆3

can be obtained from (131)–(132) by relevant hermitean conjugation.
The cubic vertices for 𝑁 = 1 Super Yang Mills can be recovered by choosing 𝑠1 = 𝑠2 = 𝑠3 = 1

in the equations above. Similarly, pure 𝑁 = 1 Supergravity vertices can be recovered by putting
𝑠1 = 𝑠2 = 𝑠3 = 2.
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2020" and of the online workshop “Aspects of Symmetry" for the invitation to give talks. M.T.
would like to thank the Department of Mathematics, the University of Auckland for the hospitality
during the final stage of the project. D.W. would like to thank the Yukawa Institute of Theoretical
Physics (YITP) for its support in the period when this work was completed. The work of I.L.B.
and V.A.K. was partially supported by the Ministry of Education of Russian Federation, project
FEWF-2020-0003. The work of M.T. and D.W. was supported by the Quantum Gravity Unit of the
Okinawa Institute of Science and Technology Graduate University (OIST).

A. Conventions

We mainly follow the notations of [55].
The Latin letters 𝑎, 𝑏 . . . label spinorial indices. The Greek letters 𝜇, 𝜈, . . . label flat space-time

vector indices and Greek letters with “hat” 𝜇̂, 𝜈̂, . . . label vector indices in curved space-time.
We choose a real representation for Majorana spinors

(𝜆𝑎)★ = 𝜆𝑎, 𝜆̄𝑎 = 𝜆𝑏𝐶𝑏𝑎 (A.1)
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The spinor indices can be raised and lowered by anti-symmetric charge conjugation matrices 𝐶𝑎𝑏

and 𝐶𝑎𝑏 as

𝜆𝑎 = 𝐶𝑎𝑏𝜆𝑏, 𝜆𝑎 = 𝜆𝑏𝐶𝑏𝑎, 𝐶𝑎𝑏𝐶𝑏𝑐 = −𝛿𝑎𝑐 . (A.2)

The 𝛾–matrices satisfy the following anti-commutation relations

(𝛾𝜇)𝑎𝑐 (𝛾𝜈)𝑐𝑏 + (𝛾𝜈)𝑎𝑐 (𝛾𝜇)𝑐𝑏 = 2𝜂𝜇𝜈𝛿𝑎𝑏 . (A.3)

In D = 4 the matrices 𝛾𝜇 and 𝛾𝜇𝜈 with both spinorial indices up (down) are symmetric and the
matrices 𝐶, 𝛾5 and 𝛾5𝛾𝜇 are anisymmetric. In D = 10 the matrices 𝛾𝜇 and 𝛾𝜇1,...,𝜇5 with both
spinorial indices up (down) are symmetric, and the matrices 𝛾𝜇1𝜇2𝜇3 are antisymmetric.

For checking the on-shell closure of the supersymmetry algebra and of the supersymmetry of
the vertices we have used the following gamma-matrix identities

(𝛾𝜈)𝑎𝑏 (𝛾𝜈)𝑐𝑑 + (𝛾𝜈)𝑎𝑐 (𝛾𝜈)𝑑𝑏 + (𝛾𝜈)𝑎𝑑 (𝛾𝜈)𝑏𝑐 = 0, (A.4)

𝛾𝜇𝛾𝜈1,𝜈2,...𝜈𝑟𝛾𝜇 = (−1)𝑟 (𝐷 − 2𝑟)𝛾𝜈1,𝜈2,...𝜈𝑟 . (A.5)

For a product of gamma matrices we have

𝛾𝜈1,...,𝜈𝑖𝛾𝜇1,...,𝜇 𝑗
=

𝑘=𝑚𝑖𝑛(𝑖, 𝑗)∑︁
𝑘=0

𝑖! 𝑗!
(𝑖 − 𝑘)!( 𝑗 − 𝑘)!𝑘!

𝛾 [𝜈1,...,𝜈𝑖−𝑘 [𝜇𝑘+1,...,𝜇 𝑗
𝛿𝜈𝑖𝜇1𝛿

𝜈𝑖−1
𝜇2 ...𝛿

𝜈𝑛−𝑘+1 ]
𝜇𝑘 ] (A.6)

and in particular

𝛾𝜇𝛾𝜈1,...𝜈𝑘 = 𝛾𝜇,𝜈1,...,𝜈𝑘 + 𝑘𝜂𝜇 [𝜈1𝛾𝜈2,...,𝜈𝑘 ] (A.7)

B. 𝑁 = 1 Supergravities in D = 4, 6, 10

The Lagrangian for D = 10 𝑁 = 1 Supergravity is [1] – [2]

𝐿 = −1
2
𝑅 − 1

2
𝜓̄𝜇̂𝛾

𝜇̂𝜈̂𝜌̂D𝜈̂𝜓𝜌̂ −
3
4
𝜙−

3
2 𝐻 𝜇̂𝜈̂𝜌̂𝐻𝜇̂𝜈̂𝜌̂ −

− 1
2
Ξ̄𝛾 𝜇̂D𝜇̂Ξ − 9

16
𝜕 𝜇̂𝜙 𝜕𝜇̂𝜙

𝜙2 − 3
√

2
8

𝜓̄𝜇̂𝛾
𝜈̂𝛾 𝜇̂Ξ

𝜕𝜈̂𝜙

𝜙
+

+
√

2
16

𝜙−
3
4 𝐻𝜈̂𝜌̂𝜏̂ (𝜓̄𝜇̂𝛾

𝜇̂𝜈̂𝜌̂𝜏̂𝜆̂𝜓𝜆̂ + 6𝜓̄ 𝜈̂𝛾𝜌̂𝜓 𝜏̂ −
√

2𝜓̄𝜇̂𝛾
𝜈̂𝜌̂𝜏̂𝛾 𝜇̂Ξ) +

+ (fermion)4

where 𝐻𝜇̂𝜈̂𝜌̂ = 𝜕[ 𝜇̂𝐵𝜈̂𝜌̂] and D𝜇̂ is a covariant derivative

D𝜇̂Ψ
𝑎
𝜈̂ = 𝜕𝜇̂Ψ

𝑎
𝜈̂ + 1

4
𝜔𝜇̂

𝜌𝜎 (𝛾𝜌𝜎Ψ𝜈̂)𝑎 (B.1)
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The supersymmetry transformations with a local parameter 𝜖𝑎 (𝑥) are

𝛿𝑒
𝜇

𝜇̂
=

1
2
𝜖 𝛾𝜇 𝜓𝜇̂ (B.2)

𝛿𝜙 = −
√

2
3
𝜙 𝜖 Ξ

𝛿𝐵𝜇̂𝜈̂ =

√
2

4
𝜙

3
4 (𝜖 𝛾𝜇̂ 𝜓𝜈̂ − 𝜖 𝛾𝜈̂ 𝜓𝜇̂ −

√
2

2
𝜖 𝛾𝜇̂𝜈̂Ξ)

𝛿𝜓𝜇̂ =

(
D𝜇̂ +

√
2

32
𝜙−

3
4 (𝛾𝜇̂ 𝜈̂𝜌̂ 𝜎̂ − 9 𝛿𝜈̂𝜇̂ 𝛾

𝜌̂ 𝜎̂) 𝐻𝜈̂𝜌̂ 𝜎̂

)
𝜖 + (fermion)2

𝛿Ξ = −3
√

2
8

𝜙−1 𝛾 𝜇̂ 𝜕𝜇̂𝜙 𝜖 +
1
8
𝜙−

3
4 𝛾 𝜇̂𝜈̂𝜌̂ 𝜖 𝐻𝜇̂𝜈̂𝜌̂ + (fermion)2 (B.3)

The Lagrangian for D = 4 𝑁 = 1 Supergravity coupled with one chiral supermultiplet, with
no superpotential and the cannonical kinetic term for the scalars is [3]

𝐿 = −1
2
𝑅 − 1

2
𝜓̄𝜇̂𝛾

𝜇̂𝜈̂𝜌̂

(
D𝜈̂ +

1
8
((𝜕𝜈̂𝑧)𝑧★ − (𝜕𝜈̂𝑧★)𝑧)𝛾5

)
𝜓𝜌̂ −

− 1
2
(𝜕𝜇𝑧) (𝜕𝜇𝑧★) −

1
2
Ξ̄

(
𝛾 𝜇̂D𝜇̂ − 1

8
((𝜕𝜈̂𝑧)𝑧★ − (𝜕𝜈̂𝑧★)𝑧)

)
Ξ

+ (fermion)4

which is invariant under supersymmetry transformations

𝛿𝑒
𝜇

𝜇̂
=

1
2
𝜖 𝛾𝜇 𝜓𝜇̂ (B.4)

𝛿𝑧 =
1
2
𝜖 Ξ

𝛿𝜓𝜇̂ =

(
D𝜇̂ + 1

8
((𝜕𝜈̂𝑧)𝑧★ − (𝜕𝜈̂𝑧★)𝑧)

)
𝜖 + (fermion)2

𝛿Ξ =
1
2
(1 + 𝛾5) 𝛾 𝜇̂ (𝜕𝜇̂𝑧)𝜖 + (fermion)2

with 𝛾5 = −𝛾0𝛾1𝛾2𝛾3.
The Lagrangian for D = 6 𝑁 = 1 Supergravity coupled to one (1, 0) tensor multiplet is

𝐿 = −1
2
𝑅 − 𝑖

2
𝜓̄𝜇̂𝛾

𝜇̂𝜈̂𝜌̂D𝜈̂𝜓𝜌̂ +
1
12

𝑒2
√

2𝜙 𝐻 𝜇̂𝜈̂𝜌̂𝐻𝜇̂𝜈̂𝜌̂ +

+ 𝑖

2
Ξ̄𝛾 𝜇̂D𝜇̂Ξ + 1

2
𝜕 𝜇̂𝜙 𝜕𝜇̂𝜙 − 1

√
2
Ξ̄𝛾 𝜈̂𝛾 𝜇̂𝜓𝜈̂ 𝜕𝜈̂𝜙 +

− 𝑖

24
𝑒
√

2𝜙𝐻𝜇̂𝜈̂𝜌̂ (−𝜓̄𝜆̂𝛾 [𝜆̂𝛾
𝜇̂𝜈̂𝜌̂𝛾 𝜏̂ ]𝜓

𝜏̂ + 2𝑖𝜓̄𝜆̂𝛾
𝜇̂𝜈̂𝜌̂𝛾𝜆̂Ξ − Ξ̄𝛾 𝜇̂𝜈̂𝜌̂Ξ) +

+ (fermion)4

where 𝐻𝜇̂𝜈̂𝜌̂ = 𝜕[ 𝜇̂𝐵𝜈̂𝜌̂] and D𝜇̂ is a covariant derivative

D𝜇̂Ψ
𝑎
𝜈̂ = 𝜕𝜇̂Ψ

𝑎
𝜈̂ + 1

4
𝜔𝜇̂

𝜌𝜎 (𝛾𝜌𝜎Ψ𝜈̂)𝑎 (B.5)
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The supersymmetry transformations with a local parameter 𝜖𝑎 (𝑥) are

𝛿𝑒
𝜇

𝜇̂
= −𝑖𝜖 𝛾𝜇 𝜓𝜇̂ (B.6)

𝛿𝜙 =
1
√

2
𝜖 Ξ

𝛿𝐵𝜇̂𝜈̂ = − 𝑖

2
𝑒−

√
2𝜙 (𝜖 𝛾𝜇̂ 𝜓𝜈̂ − 𝜖 𝛾𝜈̂ 𝜓𝜇̂ − 𝑖 𝜖 𝛾𝜇̂𝜈̂Ξ)

𝛿𝜓𝜇̂ =

(
D𝜇̂ − 1

24
𝑒
√

2𝜙𝛾𝜌̂ 𝜎̂ 𝜏̂𝛾𝜇̂ 𝐻𝜌̂ 𝜎̂ 𝜏̂

)
𝜖 + (fermion)2

𝛿Ξ = − 𝑖
√

2
𝛾 𝜇̂𝜖 𝜕𝜇̂ 𝜙 − 𝑖

12
𝑒
√

2𝜙𝛾 𝜇̂𝜈̂𝜌̂𝜖𝐻𝜇̂𝜈̂𝜌̂ + (fermion)2 (B.7)

We linearize around a flat background

𝑒
𝜇

𝜇̂
(𝑥) = 𝛿

𝜇

𝜇̂
+ 1

2
ℎ
𝜇

𝜇̂
(𝑥), 𝑒

𝜇̂
𝜇 (𝑥) = 𝛿

𝜇̂
𝜇 − 1

2
ℎ
𝜇̂
𝜇 (𝑥), (B.8)

and consider a cubic Lagrangian with global supersymmetry.
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