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1. Introduction

Topology is an interesting mathematical field in and of itself and existing toolkit of topology
can be used in condensed matter to extend classification of states of matter.

1.1 Topology in condensed matter

Key concept in topology is continuity. Two topological spaces are considered to be equivalent
if they can be continuously mapped to each-other. In condensed matter systems we introduce the
notion of topological equivalence on the space of gapped Hamiltonians. Hamiltonian is gapped if
the difference in its ground state and first excited state energies remains finite in the limit where we
take the system to be infinitely large.

Consider a spaceΩ of Hamiltonians. Two Hamiltonians are defined as topologically equivalent
if the two can be connected in the Hamiltonian space without closing the energy gap. Physically this
corresponds to adiabatically changing the parameters to transform one Hamiltonian into another
while every intermediate Hamiltonian remains gapped. In Figure 1 𝐻 and 𝐻 ′′ are equivalent since
there exists a path connecting them while satisfying this requirement. But 𝐻 ′ is separated from 𝐻

and 𝐻 ′′ by a wall of gap closing denoted in red, meaning 𝐻 and 𝐻 ′ are topologically inequivalent.
Having defined equivalence we have to define a topologically trivial phase. For this we choose

Figure 1: Hamiltonian space with two phases separated by wall of gap closing denoted in red. 𝐻 and 𝐻 ′′

are equivalent while 𝐻 and 𝐻 ′ are not.

atomic insulators which are insulating because electrons are tightly bound to the atomic cores inside
the solid. If a system is not topologically equivalent to an atomic insulator then we say that it is
topological.
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2. Kitaev Chain

Kitaev introduced a 1D toy model [1] in order to argue that Majorana states could be created
in solid state systems. His main motivation was development of Majoranas as qubits for quantum
computing due to their robustness, which stems from the topological invariant that the system
possesses - Parity. The chain is a 1D system with nearest neighbor hopping 𝑡, chemical potential
𝜇 and nearest neighbor superconductive pairing Δ. These physical properties span our parameter
space. Hamiltonian is given as

H = −𝑡
𝐿−1∑︁
𝑗=1

(𝑐†
𝑗
𝑐 𝑗+1 + ℎ.𝑐.) + Δ

𝐿−1∑︁
𝑗=1

(𝑐 𝑗𝑐 𝑗+1 + ℎ.𝑐.) − 𝜇

𝐿∑︁
𝑗=1

𝑛 𝑗 (1)

where 𝑛 𝑗 = 𝑐
†
𝑗
𝑐 𝑗 is the number operator. Note first two sums don’t include last lattice site due to

open boundary conditions. Also note that due to the pairing term 𝑈 (1) symmetry is broken down
to Z2. In order to investigate this system further we assume each lattice cite to be occupied by two
Majorana fermions 𝑐 → 𝛾𝑎, 𝛾𝑏(see Figure 2a)

𝛾 𝑗𝑎 = 𝑐 𝑗 + 𝑐
†
𝑗

𝛾 𝑗𝑏 = 𝑖(𝑐 𝑗 − 𝑐
†
𝑗
) (2)

Ordinary fermion operators 𝑐 are nilpotent meaning ∃𝑛 ∈ N : 𝑐𝑛 = 0. For spin-1/2 particles
like we have here, 𝑛 = 2. Majorana fermions 𝛾 are superpositions of creation and annihilation
operators of ordinary fermions, because of that they are no longer nilpotent, instead 𝛾2 = 1.
They do, however, still retain the anti-commutation property of ordinary fermions, that is to say
{𝛾𝑖𝜆, 𝛾 𝑗𝜆′} = 𝛿𝑖 𝑗𝛿𝜆𝜆′. parity operator can be constructed by taking products of these operators

𝑃 =

𝐿∏
𝑗=1

(−𝑖𝛾 𝑗𝑎𝛾 𝑗𝑏) (3)

Assuming symmetric line conditions(Δ = 𝑡) results in

H = 𝑡

𝐿−1∑︁
𝑗=1

𝑖𝛾 𝑗𝑏𝛾 𝑗+1𝑎 −
𝜇

2

𝐿∑︁
𝑗=1

(1 + 𝑖𝛾 𝑗𝑎𝛾 𝑗𝑏) (4)

This system admits two limits 𝜇 � 𝑡 and 𝑡 � 𝜇. In first case (Figure 2b) majoranas become bound
on the same cites and and there is no more hopping between the neighboring cites. This system
has a unique ground state. In the opposite limit we end up with a 2-fold degenerate ground state.
Degeneracy is due to parity - 𝑃 = ±1. As we can see for two sets of (𝑡,Δ, 𝜇) we get two Hamiltonians
with different eigensystems. If we were to smoothly vary these parameters (0, 0, 𝜇) → (𝑡, 𝑡, 0) there
would be gap closing at (𝑡, 𝑡, 2𝑡) which, from the definition in section 1.1, means that these two
Hamiltonians represent topologically distinct phases.
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(a) Each lattice cite is occupied by two Majorana fermions denoted in black and white. Dashed
line implies there are nearest neighbor interactions

(b) 𝜇 � Δ, 𝑡 majorana fermions are bound to each-other on the same cite. There is no more
hopping between neighboring cites.

(c) 𝜇 � Δ, 𝑡 majorana fermions from neighboring cites are bound to each-other there are no
hoppings between bound states. There are two unpaired majoranas on the endpoints of the chain.

Figure 2: Diagrammatic representation of various phases in Kitaev chain

3. BCS-Hubbard Model

3.1 Hamiltonian

Consider an N-dimensional general bipartite lattice with nearest neighbor hopping - 𝑡 and
superconductive(SC) pairing - Δ. Hopping and SC are defined only between different sublattices.
Here sublattices 𝐴 and 𝐵 are color-coded in blue and red to make the equations more amenable to
visual parsing. In this chapter 𝑖 and 𝑗 will be exclusively referring to cites on sublattice 𝐴 and 𝐵

respectively and will be color-coded accordingly as 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐵. Nearest neighbors are denoted
as 〈𝑖, 𝑗〉 and 𝜎 is a label for spin. Write Hamiltonian as in [2]

Hfree =
∑︁

〈𝑖, 𝑗 〉𝜎
𝑡𝑖 𝑗𝑐

†
𝑖𝜎
𝑐 𝑗 𝜎 + ℎ.𝑐. + Δ𝑖 𝑗𝑐

†
𝑖𝜎
𝑐
†
𝑗 𝜎

+ ℎ.𝑐. (5)

Furthermore Hubbard interaction at half filling is defined using the spin degrees of freedom.

Hhubbard = 𝑈
∑︁
𝑙

(
𝑛𝑙↑ −

1
2

) (
𝑛𝑙↓ −

1
2

)
(6)

For a homogeneous case 𝑡𝑖 𝑗 = 𝑡 and Δ𝑖 𝑗 = Δ.

3.2 Composite fermions

We go to Majorana basis similar to Kitaev model

𝑐𝑖𝜎 = 𝜂𝑖𝜎 + 𝑖𝛽𝑖𝜎 𝑐 𝑗 𝜎 = 𝛽 𝑗 𝜎 + 𝑖𝜂 𝑗 𝜎

Resulting in

H =
∑︁

〈𝑖, 𝑗 〉𝜎
2𝑖(𝑡 − Δ)𝜂𝑖𝜎𝜂 𝑗 𝜎 − 2𝑖(𝑡 + Δ)𝛽𝑖𝜎𝛽 𝑗 𝜎 −𝑈

∑︁
𝑙

(2𝑖𝛽𝑙↑𝛽𝑙↓) (2𝑖𝜂𝑙↑𝜂𝑙↓) (7)

At Symmetric lines 𝐷𝑙 = 4𝑖𝜂𝑙↑𝜂𝑙↓ is conserved for each lattice cite as was shown in [3], [4].
However, 𝐷1 =

∑
𝑙 4𝑖𝛽𝑙↑𝛽𝑙↓ and 𝐷2 =

∑
𝑙 4𝑖𝜂𝑙↑𝜂𝑙↓ are conserved for all values of Δ, 𝑡. Which is

easy to show by writing [𝐻, 𝐷𝑎] and using commutator-anticommutator identities.
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From here we can make another change of basis to composite 𝑑-fermions.

𝑑𝑖1 = 𝛽𝑖↑ − 𝑖𝛽𝑖↓ 𝑑 𝑗1 = 𝛽 𝑗↑ + 𝑖𝛽 𝑗↓

𝑑𝑖2 = 𝜂𝑖↑ + 𝑖𝜂𝑖↓ 𝑑 𝑗2 = 𝜂 𝑗↑ − 𝑖𝜂 𝑗↓

For Δ = 𝑡 Hamiltonian becomes quadratic for any value of 𝑈, hence diagonalizable. Moreover
since 𝐷𝑙 is conserved and 𝐷2

𝑙
= 1 Hilbert space gets split into 2𝑁 sectors where 𝑁 is the number

of lattice cites. In composite fermion basis 𝐷𝑙 measures �̂�-axis spin polarization.

4. Carbon Nanoribbons

Applying BCS-Hubbard model to nanoribbons we derive Bloch matrix for zigzag and armchair
geometries and for both ferromagnetic and antiferromagnetic cases. In the rest of the paper 𝐷𝑎𝑚

and 𝐷𝑏𝑚 are 𝐷𝑙 for sublattices 𝐴 and 𝐵 respectively. 𝑚 is the index of lattice cites along the width
of the ribbon. Choosing a specific Hilbert space sector is tantamount to setting corresponding 𝐷𝑙’s
to 1 or -1.

4.1 Zigzag Nanoribbon(ZNR)

Figure 3: Lattice of an zigzag carbon nanoribbon, with unit cell(dashed) of size 𝑎
√

3, width 𝑁 and length
𝐿𝑦 .

4.1.1 Antiferromagnetic(AF) order

In [4] the ground state of this system is shown to belong to the sector of the Hilbert space where
𝐷𝑎𝑚 = −𝐷𝑏𝑚 = −1. This shall be referred to as AF order, since in this sector both sub-lattices are
populated by 𝑑2-fermions and on different sub-lattices 𝑑2 has opposite 𝑦-polarizations. This can be
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verified by examining the transformations between ordinary and composite fermions bases. Now
the matrix can be written as

H𝑘 =

©«

−𝑈
2

0 0 2𝑖𝑡 (𝑔𝑘1 + K)

0
𝑈

2
2𝑖𝑡 (𝑔𝑘1 + K) 0

0 −2𝑖𝑡 (𝑔𝑘1 + K†) −𝑈
2

0

−2𝑖𝑡 (𝑔𝑘1 + K†) 0 0
𝑈

2

ª®®®®®®®®¬
(8)

K =
∑

𝑚 |𝑚〉〈𝑚 + 1| is a unilateral shift operator with ones on the upper diagonal and 𝑔𝑘 =

2 cos(
√

3𝑘𝑎/2). Energy levels are given in Figure 4b. We observe gap opening however the
degeneracy is not lifted and every level is still doubly degenerate.

4.1.2 Ferromagnetic(F) order

Ferromagnetic in this context means we are considering the sector of Hilbert space where only
one sub-lattice is populated by 𝑑2-fermions. It corresponds to the state in which all 𝑑2 fermions are
aligned. It’s the same as setting 𝐷𝑙 = 1 or 𝐷𝑙 = −1. Now the matrix looks like

H𝑘 =

©«

∓𝑈
2

0 0 2𝑖𝑡 (𝑔𝑘1 + K)

0 ±𝑈
2

2𝑖𝑡 (𝑔𝑘1 + K) 0

0 −2𝑖𝑡 (𝑔𝑘1 + K†) ±𝑈
2

0

−2𝑖𝑡 (𝑔𝑘1 + K†) 0 0 ∓𝑈
2

ª®®®®®®®®¬
(9)

Since the spectrum is symmetric around zero, ± doesn’t change anything, and after solving for the
eigenvalues and plotting them w.r.t. momentum (Figure 4c) one can see energy levels splitting.
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(b) Antiferromagnetic order
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(c) Ferromagnetic order

Figure 4: Zigzag energy levels for F and AF orders. 𝐸 (𝑘) and 𝑘 are measured in units of 𝑡. Calculation is
done for 𝑁 = 20, 𝑈 = 1
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4.2 Armchair Nanoribbon(ANR)

Armchair nanoribbon behavior depends on it’s width. It can be metallic or have an energy gap.

Figure 5: Lattice of an armchair carbon nanoribbon, with unit cell(dashed) of size 3𝑎, width 𝑁 and length
𝐿𝑦

4.2.1 Antiferromagnetic(AF) order

As it was for zigzag configuration AF order here means that we are in the Hilbert space sector
defined by 𝐷𝑎𝑚 = −𝐷𝑏𝑚 = −1 and the matrix is rewritten as

H𝑘 =

©«

−𝑈
2

0 0 2𝑖𝑡 (1 + 𝑒−𝑖𝑘𝑎𝑡/2J)

0
𝑈

2
2𝑖𝑡 (1 + 𝑒𝑖𝑘𝑎𝑡/2J) 0

0 −2𝑖𝑡 (1 + 𝑒−𝑖𝑘𝑎𝑡/2J) −𝑈
2

0

−2𝑖𝑡 (1 + 𝑒𝑖𝑘𝑎𝑡/2J) 0 0
𝑈

2

ª®®®®®®®®¬
(10)

J =
∑

𝑚 |𝑚〉〈𝑚 + 1| + |𝑚 + 1〉〈𝑚 | is a bilateral shift operator with ones on the upper and lower
diagonals. Solving for the eigenvalues for every value of 𝑘 and plotting the results gives the energy
band structure 7a, 7b, 7c. As with zigzag geometry here too we observe gap opening without lifting
the degeneracy.
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(c) N=7

Figure 6: Energy bands for widths 5,6,7 for the case 𝑈 = 0. Everything is measured in units of 𝑡.
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(c) N=7 (AF)

Figure 7: Energy bands for widths 5,6,7 in antiferromagnetic order. Everything is measured in units of 𝑡.
For all calculations 𝑈 = 1

4.2.2 Ferromagnetic(F) order

Ferromagnetic as it was for zigzag nanoribbon means we are considering the sector of Hilbert
space where only one sub-lattice is populated by 𝑑2-fermions, resulting in 𝐷𝑎𝑚 = 𝐷𝑏𝑚 = ±1. Now
the matrix looks like

H𝑘 = ±

©«

∓𝑈
2

0 0 2𝑖𝑡 (1 + 𝑒−𝑖𝑘𝑎𝑡/2J)

0 ±𝑈
2

2𝑖𝑡 (1 + 𝑒𝑖𝑘𝑎𝑡/2J) 0

0 −2𝑖𝑡 (1 + 𝑒−𝑖𝑘𝑎𝑡/2J) ±𝑈
2

0

−2𝑖𝑡 (1 + 𝑒𝑖𝑘𝑎𝑡/2J) 0 0 ∓𝑈
2

ª®®®®®®®®¬
(11)

Since the spectrum is symmetric± doesn’t change anything. Solving for the eigenvalues and plotting
it w.r.t. we can see the same behavior as in zigzag case, degeneracy is lifted (Figure 8a, Figure 8b,
Figure 8c). For some widths there exists a critical value of 𝑈 = 𝑈𝑐 where the band gap closes, but
if we keep increasing 𝑈 eventually gap opens again and the band structure becomes that of a trivial
insulator. Since band closing is unavoidable initial state must be topologically nontrivial.
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(c) N=7 (F)

Figure 8: Energy bands for widths 5,6,7 in ferromagnetic order. Everything is measured in units of 𝑡. For
all calculations 𝑈 = 1

5. Effective Hamiltonian

As we have seen the Hamiltonian can be written as

𝐻ZNR = −𝑈
2
𝐷 ⊗ 𝜎𝑧 − 2𝑡1 ⊗ 𝜎𝑦 ⊗ 𝜎𝑥 + 𝑖𝑡𝑔𝑘K ⊗ 𝜎+ ⊗ 𝜎𝑥 − 𝑖𝑡𝑔𝑘K† ⊗ 𝜎− ⊗ 𝜎𝑥 (12)

or

𝐻ANR = −𝑈
2
𝐷 ⊗ 𝜎𝑧 − 2𝑡 (1 + J cos(𝑘𝑎𝑇 /2)) ⊗ 𝜎𝑦 ⊗ 𝜎𝑥 − 2𝑡 sin(𝑘𝑎𝑇 /2)J ⊗ 𝜎𝑦 ⊗ 𝜎𝑦 (13)

Matrix 𝐷 depending on Hilbert space sector can take the form 𝐷 = 1 ⊗ 1 or 𝐷 = 1 ⊗ 𝜎𝑧 . 𝜎𝑖 are
Pauli matrices, and 𝜎± = 𝜎𝑥 ± 𝑖𝜎𝑦 . Now we diagonalize the first term in the matrix product. Let
𝐴 ∈ {J,K} Then there exists a unitary transform such that

𝑈𝐴𝑈† = diag(𝜆1, 𝜆2, · · · ) (14)

where 𝜆’s are the eigenvalues and consequently

𝑈 (1 + 𝐴)𝑈† = diag(𝜆1 + 1, 𝜆2 + 1, · · · ) (15)

For every 𝜆 Equation 12 and Equation 13 become 4d Dirac equations, since direct product of Pauli
matrices along with 2𝑥2 unit matrix spans Clifford algebra. In fact we are free to choose the basis
{Γ𝑎}𝑎=1· · ·5 as long as it satisfies anti-commutation relations

{Γ𝑎, Γ𝑏} = 2𝛿𝑎𝑏 [Γ𝑎, Γ𝑏] = 2𝑖Γ𝑎𝑏 (16)

One possible choice is [5]

{𝜎𝑥 ⊗ 1, 𝜎𝑧 ⊗ 1, 𝜎𝑦 ⊗ 𝜎𝑥 , 𝜎𝑦 ⊗ 𝜎𝑦 , 𝜎𝑦 ⊗ 𝜎𝑧} (17)
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