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A two-potential formalism for the pion vector form factor
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We present a two-potential formalism for the pion vector form factor, which combines high-
accuracy elastic phase shift data with an interaction potential between coupled channels. The
model is fit to form factor data along with data from different � = 1 channels simultaneously. The
cc P-wave phase shift is used as an input. The interaction potential is composed of B-channel
resonances. The results both including and excluding the input phase shift are discussed.
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Figure 1: The hadronic vacuum polarization (left) and the hadronic light-by-light scattering (right) contri-
butions to the anomalous magnetic moment of the muon.

1. Introduction

The pion vector form factor (VFF), defined in Eq. (1), has utmost importance in hadron physics
nowadays. Perhaps the most notable significance is its relevance to the anomalous magnetic moment
of the muon 0`. The leading contributions to 0` from the hadronic sector are the hadronic vacuum
polarization (HVP) and the hadronic light-by-light scattering (HLbL) (see Fig. 1) [1]. Pions, being
the lightest mesons, contribute substantially to both HVP and HLbL [2, 3]. The pion VFF gives the
coupling of the pions to the electromagnetic current,

〈c+(@1)c−(@2) |�` |0〉 = 4(@1 − @2)`�+ (B), where B = (@1 + @2)2. (1)

Form factors are most commonly modeled by sums of Breit–Wigner functions [4] or the K-
matrix formalism [5]. Since the former violates unitarity and the latter destroys analyticity, a
new parametrization is needed, preserving both of these properties of the (-matrix. In this work
we present such a parametrization, using a two-potential formalism, introduced in Ref. [6]. This
approach has also been applied to pion and pion–kaon scalar form factors [7, 8].

2. Theory

Below the first inelastic threshold, the only allowed intermediate state is the two-pion state itself.
The discontinuity of the VFF and the elastic transition matrix can be derived using the Cutkosky
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Figure 2: Cutkosky cuts due to the 2c channel for the form factor (left) and the transition matrix element
(right).
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Figure 3: The Omnès solution compared to the experimental data for �+ (B) from Ref. [13]. The input phase
shift X̃(B) is from Ref. [12], extrapolated to c using Eq. (4). The upper panels show the effects of d −l (left)
and d − q (right) mixing in the data. The dotted lines denote thresholds for the cc, 4c, and c0l channels.

rules [9], cutting the diagrams across the intermediate states (see Fig. 2):

disc [�+ (B)] = 28 Im [�+ (B)] = 28f(B) C̃∗1 (B)�+ (B), disc [C̃1(B)] = 28f(B)
��C̃∗1 (B)��2 , (2)

where f(B) = 1
16c

√
1 − 4<2

c/B is the phase space factor for the cc state. Note, how this implies
arg C̃1(B) = arg �+ (B) [10]. Consequently, the pion VFF at low energies is driven by the cc elastic
scattering phase X̃1(B) and is given by the Omnès–Muskhelishvili solution [11]:

�+ (B) = Ω[X̃1] (B)%�(B), where Ω[X̃1] (B) = exp
{
B

c

∫ ∞

4<2
c

3B′

B′
X̃1(B′)

B′ − B − 8n

}
. (3)

The cc P-wave phase shift from Ref. [12] was used as the input. The input phase is valid up to
B2 = (1.5 GeV)2, above we have guided it smoothly to c via

X̃1(B > B2) = c +
(
X̃1 (B2) − c

) (
_2 + B2
_2 + B

)
, where _ = 10 GeV. (4)

Figure 3 shows the correspondence between the VFF data [13] and the Omnès solution. One can
clearly see the d(770) peak incorporated into the phase shift. However, the mixing effects with
l(782) and q(1020) are not built in (see the upper two panels in Fig. 3). Apart from this, the
solution clearly deviates from the data at high energies. This hints at contributions from inelastic
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channels, which suggests the following strategy: we need a model that preserves both analyticity
and unitarity, maps �+ (B) to Ω[X̃] (B) at low energies, provides an accurate high-energy description,
and includes contributions from the coupled channels as well as isospin-violating effects such as
d − l and d − q mixing.

3. Model

The splitting of the interaction potential has already been done in the past (see, e.g., Ref. [14]). We
employ a similar procedure and split the potential into two parts [6]:

+8 9 (B) = +̃8 9 (B) ++'8 9 (B). (5)

+8 9 (B) is the interaction potential between channels 8 and 9 . +̃ is the part coming from elastic
interaction and +' encompasses the rest. The subscript ' is here to indicate that we will assume
the interaction happens via B-channel resonances. By assumption, all long-ranged forces of the first
channel are contained in +̃ , which is purely elastic, i.e., only non-zero for 8 = 9 = 1. No left-hand
cuts are allowed in any other channels. Accordingly, the )-matrix splits into

)8 9 (B) = )̃8 9 (B) + )'8 9 (B), (6)

where )̃ satisfies the Lippmann–Schwinger equation: )̃ = +̃ + +̃�)̃ . � denotes the propagation of
the relevant channel. For instance, in the case of the cc channel (: = 1), we have

�1 =

∫
34;

(2c)4 |?1, ?2〉
1

(?2
1 − <

2
c + 8n)

1
(?2

2 − <
2
c + 8n)

〈?1, ?2 | , (7)

where ?1 and ?2 are the momenta of pions with ?1 − ?2 = ; and (?1 + ?2)2 = B. The vertices Γ:

are defined as

Γ
†
in = 1 + �)̃, Γout = 1 + )̃�, Γ1(B) = Ω[X̃1] (B);

for other channels (8 > 1) : Γ8 (B) =
Λ2

Λ2 + B
. (8)

Finally, the resonance )-matrix can be written as )'8 9 = b8Γout,8 (C'8 9)Γ†
in, 9b 9 , where b8 denotes the

centrifugal barrier factor for channel 8. C' is connected to the resonance potential via

C'8 9 = +'8 9 ++'8: b:�:Γ:b:︸      ︷︷      ︸
Σ:

C': 9 , C' = [1 −+'Σ]−1+', (9)

where the self energy Σ provides propagation of pions in the presence of elastic interaction. The
discontinuity relation reads

disc [Σ:] = disc [b:�:Γ:b:] = 28f:b
2
: |Γ: |2. (10)

This allows for the integral solution

Σ: (B) =
B

c

∫ ∞

Bthr,:

3B′

B′
f: (B′)b2

:
(B′) |Γ: (B′) |2

B′ − B − 8n . (11)
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The subtraction constant for Σ: is absorbed in other model parameters. Finally, the form factor can
be defined as

b8�8 = b8"8 + )8 9� 9b 9" 9 , (12)

where ": denote point-like source terms for channel : . Plugging in the )-matrix, we arrive at the
final expression:

�8 = Γout,8 [1 −+'Σ]−1
8 9 " 9 . (13)

We model the resonance potential and the point-like source term as follows:

+̄'8 9 (B) = −
='∑
;,;′
6
(;)
8
� (;,;′) (B)6 (;

′)
9
, +'8 9 (B) = +̄'8 9 (B) − +̄'8 9 (0),

": (B) = 2: −
='∑
;,;′
6
(;)
:
� (;,;′)U (;′) B, (14)

where =' is the number of resonances and

� (;,;′) (B) =
X;,;′

B − <2
;

. (15)

The effect of d mixing with l and q can be added via

21 → 21

(
1 + ^l

B

B − <2
l + 8<lΓl

+ ^q
B

B − <2
q
+ 8<qΓq

)
. (16)

The masses <l/q and widths Γl/q are taken from Ref. [15]. Note, however, that with this "1

acquires an imaginary part and, therefore, breaks unitarity. The alternative would be to include
the isospin-breaking channels into the whole picture [16]. However, we will see in the results
section that this adds only a small effect (which is already clear from Fig. 3) and therefore, we
follow Eq. (16) at this stage, not to complicate the fitting procedure even further. It can be shown
that the effect of the resonances mixing with the photon can be added without introducing new
parameters [6]. The whole list of model parameters is given in Table 1.

Parameters Notation Quantity
Bare masses of the resonances <; ='

Channel–resonance couplings 6
(;)
8

=� × ='
Resonance–photon couplings U (;) ='

Channel–photon couplings 28 =� − 1
Strength parameters for l/q mixing ^l/q 2

Table 1: The list of model parameters. =' and =� denote the number of resonances and the number of
channels respectively. Note that the amount of 28 is =� − 1, since charge conservation fixes 21 = 1. All
parameters here are real and must be determined by the fitting procedure.
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4. Application

We consider three � = 1 channels: cc, 4c, and c0l states with threshold energies equal to 2<c ,
4<c , and <c +<l , respectively. The phase space and the centrifugal barrier factors for the 2-body
channels are given by

f01 (B) =

√
_(B, <2

0, <
2
1
)

16c B
, b01 (B) =

√
_(B, <2

0, <
2
1
)

3B
, (17)

where _ is the Källen function _
(
B, <2

0, <
2
1

)
=

(
B − (<0 + <1)2) (

B − (<0 − <1)2) . This gives the
expression for the cross section of 4+4− going to channel 8:

f4+4−→8 =
44

B2
f8 (B) [b8 (B)]2 |�8 (B) |2 . (18)

For the 4c channel (i.e., channel 2) we take

f2(B) =
1

16c

(
1 − 16<2

c

B

)7/2
, b2(B) =

√
B − 16<2

c

3
. (19)

The vertices for all three channels are defined in Eq. (8). Λ in the vertex is not a parameter of the fit.
Instead, we vary it in a certain range to obtain systematic uncertainties. For the fitting procedure
we use the following data:

1. the cc P-wave scattering phase: X̃1 [3, 12, 17];

2. the vector pion form factor: �+ [13];

3. the 4+4− → c0l cross section: f4+4−→c0l [18–21];

4. the cc elasticity parameter: [1 [22];

5. the non-2c over 2c cross section ratio: A [23].

5. Results

5.1 Input Phase + Resonance Potential

We have fitted the model with 3 channels (enlisted above) and 3 resonances. The resulting curves
for the cc and the c0l form factors are shown in Fig. 4. As one can clearly see from the plots, we
have not been able to reconstruct the d(770) peak in the c0l form factor. The reason is that the
d peak enters the picture through the self-energy of the cc channel and the resonance potential is
not strong enough at low energies to couple the cc and c0l channels to each other. The resulting
parameters are given in Table 2. For this fit we have ignored the A data set. The current model
strongly exploits the 4c channel for the width generation of the resonances, which made us unable
to do the simultaneous fit to the A value. This needs to be improved in future procedures.
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Figure 4: Fit #1: results for 3 channels and 3 resonances. Form factors for the cc (red) and the c0l channel
(blue) compared with the data. Dotted gray vertical lines are threshold energies and dashed red vertical lines
are the masses of resonances. The indicated uncertainties are due to the value of Λ, which we vary in the
range from 4 GeV to 7 GeV.

5.2 Resonance Potential

For the second fit we have removed the input phase from the model, which effectively leaves us with
only the resonance potential (again, we fit 3 resonances). The idea was to include the d(770) not
through the input phase shift but as a resonance of the model. This way the d couples directly to the

<1 = 1313 ± 13 MeV <2 = 2027 ± 27 MeV <3 = 2860 ± 51 MeV
611 = −0.07 ± 0.03 612 = −5.33 ± 0.19 613 = 1.67 ± 0.13
621 = 0.12 ± 0.48 622 = 2.89 ± 0.16 623 = 25.0 ± 1.5
631 = −4.85 ± 0.63 632 = −24.0 ± 0.07 633 = −8.75 ± 1.2
U1 = −0.56 ± 0.01 U2 = −0.002 ± 0.007 U3 = −0.14 ± 0.03
22 = 12.9 ± 1.0 23 = 3.13 ± 0.25
^l = −0.002 ± 0.0008 ^q = 0.0005 ± 0.0024

Table 2: Results of the fit #1: j2/d.o.f. = 3.13 (excluding the A data set).

<1 = 806 ± 2 MeV <2 = 1667 ± 23 MeV <3 = 2423 ± 36 MeV
611 = −6.0 ± 0.3 612 = −0.53 ± 0.17 613 = 1.59 ± 0.22
621 = −0.50 ± 0.07 622 = −4.11 ± 0.07 623 = −7.73 ± 0.27
631 = 4.29 ± 0.32 632 = −24.5 ± 1.1 633 = −24.8 ± 1.4
U1 = −0.47 ± 0.02 U2 = −0.343 ± 0.004 U3 = 0.13 ± 0.01
22 = −1.2 ± 2 23 = 1.22 ± 0.16
^l = 0.020 ± 0.009 ^q = 0.001 ± 0.004

Table 3: Results of the fit #2: j2/d.o.f. = 5.05 excluding the X̃1 data set and 88.32 including it.
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(a) Form factors for the cc (red) and the c0l (blue)
channel compared with the data.
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(b) The non-2c to 2c cross section ratio compared
with the data from Ref. [23].
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[Garćıa-Mart́ın 2011]

η(E)

(d) Elasticity parameter [1 (yellow) compared to the
parametrization given in Ref. [22] (light blue).

Figure 5: Fit #2: results for 3 channels and 3 resonances. Dotted gray vertical lines are threshold energies
and dashed red vertical lines are the masses of resonances. The indicated uncertainties are due to the value
of Λ, which we vary in the range from 4 GeV to 7 GeV.

c0l channel and the difficulty of the reconstruction of its signal in �3 would be resolved. The fitting
results are shown in Fig. 5 and the parameters are listed in Table 3. One can clearly see the d(770)
peak in both cc and c0l form factors now. Moreover, the A ratio, which contains the information
about the 4c channel, is also reproduced more accurately. The shortcoming of the fit, however, lies
within the phase shifts. Since we do not have an input phase, the scattering phase is reconstructed
from the resonance potential. Due to the exceptional precision of the Bern phase shifts, including
the data set increases the j2 value tremendously (see the comparison within the caption of Table 3).
We deduce therefrom that the resonance model is far too simple compared with the methods used
in Refs. [3, 12] to reconstruct the scattering phase accurately (for instance, the model completely
ignores left-hand cuts for the moment, which are crucial to describe cc scattering).

6. Conclusions

We have used two different approaches to describe the data for the pion VFF and the c0l production
form factor simultaneously. Within the first approach we have combined the high precision cc P-
wave phase shifts with a resonance potential in a way that preserves unitarity and analyticity. We
have found that the resonance potential alone is not strong enough to reconstruct the d(770) peak
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in the c0l channel. This could be improved adding a contact interaction between the channels. In
addition, including the l → c0W∗ decay data to the fit could lead to further improvements.
Our second strategy was to use a simple resonance model without the input phase shift, employing
a unitarized Gounaris–Sakurai model. The results of the fit show that both cc and c0l form factors
can be described within the unified resonance model. However, the simplicity of the model renders
the resulting phase shifts incompatible with the results of much more involved research from the
past. This problem could also be dealt with by keeping the input phase and introducing a contact
interaction.
The predicted cross-section ratio A deviates from the experimental values between the 4c and
c0l thresholds. This discrepancy could be improved by adding exclusive 4c data into the fitting
procedure. The analysis could be improved with the ongoing research of the amplitude of the
reaction 4+4− → 4c. In particular, the 01c intermediate state could be included into the model (for
the role of 01(1260) in the 4c processes see, e.g., Refs. [24, 25]). We leave such improvements to
future research.
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