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Land surface scheme in climate models is a solver for a nonlinear PDE system, which describes
thermal conductance and water diffusion in soil. Thermal conductivity A7, water diffusivity Ay
and hydraulic conductivity y coefficients of this system are functions of the solution of the system
W and T. For the climate models to accurately represent the Earth system’s evolution, one needs
to approximate the coefficients or estimate their values empirically. Measuring the coefficients is a
complicated in-lab experiment without a chance to cover the full range of environmental conditions.
In this work, we propose a data-driven approach for approximating the parameters of the PDE
system describing the evolution of soil characteristics. We formulate the coefficients as parametric
functions, namely artificial neural networks. We propose training these neural networks with the
loss function computed as a discrepancy between the PDE system solution and the measured
characteristics W and 7. We also propose a scheme inherited from the backpropagation method
for calculating the gradients of the loss function w.r.t. network parameters. As a proof-of-concept
step, we assessed the capabilities of our approach in three synthetic scenarios: a nonlinear thermal
diffusion equation, a nonlinear liquid water W diffusion equation, and Richards equation. We
generated realistic initial conditions and simulated synthetic evolutions of W and T that we used
as measurements in the networks* training procedure for these three scenarios. The results of our
study show that our approach provides an opportunity for reconstructing the PDE coefficients of

various forms accurately without actual knowledge of their ground truth values.
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1. Introduction

The core of a land surface scheme in climate models is a solver for a nonlinear PDE system
describing thermal conductance and water diffusion in soil (1, 2). The system includes heat

conductivity equation:
or o adT

pC— = a—z/lra—z, (1)
where p is soil density, C is thermal capacity, and z is a coordinate directed along gravity downwards.
In this study, we do not consider water phase transitions, thus we dropped some of the terms that
are irrelevant in this case. The second equation of the system is the one for liquid water content (2)

describing vertical transport (diffusion and gravitational infiltration):

ow 0 (/l GW) dy @)
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where we also dropped irrelevant terms for the sake of clarity. There are also an equation describing
water vapor transport and the dynamics of ice content that we do not consider in this study.

The system of equations above is supplemented by boundary conditions, representing heat and
mass balance at boundaries z = 0, H or prescribed time series (Dirichlet conditions). The system
includes thermal conductivity A7 (W), liquid water diffusivity Ay (W) and hydraulic conductivity
v (W) coefficients that are functions of the solution of the system, i.e., liquid water content W.
For the climate models to accurately represent the Earth system’s evolution, one needs to identify
the equations meaning either approximating the coefficients or assessing their values empirically.
Measuring the coeflicients is a complicated in-lab experiment. Also, there are many soil types that
differ in physical properties, which results in varying dependencies A7 (W), Aw (W) and yw (W).
Thus, there is no chance to exhaustively measure soil characteristics for all soil types covering the
full range of environmental conditions. There are known approximate parametric forms of the
coefficients [1-3] that, however, lack accuracy and, in turn, need their identification w.r.t. their own
parameters.

The objective of this study is to show the way to acquire the coefficients as functions of solutions
T and W, given known solution W (¢) , T (¢) or measured evolution of soil column W,,, (¢) , T, (¢).

2. Methods

In this proof-of-concept study, we consider known forms of the PDE parameters A7, Aw and
v shown in Section 2.3 as ground truth. We consider processes described by equations (1,2,3) with
known A7, Aw and vy as the ones that generate the measured 7 and W profiles. We also consider these
ground truth coefficients being too expensive to measure in a field or in-lab experiments. Instead, we
propose a data-driven approach for approximating these coefficients. In our study, we formulate the
approximated coeflicients as parametric functions A7 (T) = F (T, 04,), Aw (W) = F (W, 0,,,) and
yw (W) =F (W, Hy), namely artificial neural networks. Here, 6,,, 6,,, and 6, are the networks'
coefficients. We formulate the networks the way so they have high enough expressive power to
represent a wide range of nonlinear functions. In this study, we model numerically the evolution
of soil characteristics 7 or W with ground truth coeffcients. This way we acquire the evolution we
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call "measured” or "true" (see top branch of forward computations in Figure 1 marked with blue
bold arrows). We then model the same evolution using the coefficients approximated by the neural
networks mentioned above (see bottom branch of forward computations in Figure 1 marked with red
bold arrows). The parameters of the networks are then optimized by minimizing the discrepancy
between the modeled solutions of these two types. In Figure 1, one may see the two numerical
solutions of a PDE and the loss function which is shown to be MSE (‘?9—);), where X is a substitute for
temperature 7" or liquid water content W depending on the equation considered. Note that the loss

function is not necessarily mean squared error, but may be any other differentiable loss function.
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Figure 1: The scheme of the approach for the computation of loss function £ gradients w.r.t. parameters of
the neural network. Here, the numerical approximations of the partial derivatives %—}f are computed using the
formulae (4) and (5); X is a substitute for temperature 7" or liquid water content W; A, is known form for
the parameter to identify; An v is the approximation of this parameter computed using the neural network; i
enumerates level elements following the spatial coordinate z; k enumerates profiles of a mini-batch in case
of mini-batch stochastic optimization procedure.

2.1 Problem setup

In this study, we assess the capabilities of the approach we present in three scenarios. In the
first scenario, we consider nonlinear thermal conductance (diffusion) equation (1). We assume
Dirichlet boundary conditions meaning for each T profile the solution on the boundaries assumed
either to be constant or to be represented by a time series. The method we propose, however, may
be applied to cases with other b.c.s as well. The task is to find a dependency Ay n (T') represented
by a neural network, given a solution 7" of this equation and which minimizes the error of Ty
approximation in respect to T, where Ty is a solution of (1) given Ap(T) = Ayn(T). In this
scenario, we imply the only a priori assumption about A7(T) that the function A7(7) may be
approximated by a neural network with an appropriate quality.

In the second scenario, we consider a nonlinear liquid water diffusion equation with Dirichlet
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b.c.s, similar to the thermal conductance equation presented above:

ow o ow
2t o)

ﬂW(W)a—Z

Here, the assumptions about Ay (W) are similar to the ones about A7 (7) with additional
physics-prescribed considerations:

e W>0,and W < 1;

s Aw(0) =05
. %’IV{," > 0 for any W satisfying the first requirement.

In the third scenario, we consider the equation of nonlinear liquid water dynamics in soil,
also known as Richards equation (2). The assumptions about Ay (W) here are the same. We also
considered the same assumptions about yy (W).

2.2 Loss function and optimization procedure

In a routine supervised data-driven problem, one needs to present ground truth for a target
value. In the case of a soil PDE system, one cannot afford measurements of the full range of
coefficients’ ground truth values. In contrast to the routine data science approach, we propose
training the neural networks with the loss function computed as a discrepancy between a PDE
solution with the coefficients approximated by the network, and the measured or modeled evolution
of the characteristics W and T'.

As mentioned in Section 2.1, we model the "true" evolution as a numerical solution of a PDE
with known forms of the coefficients. The numerical solution is often known in discrete points
of time and space. For the discrete mesh, we approximate numerically the partial derivatives in
equations (1), (2) or (3) using explicit scheme. In case of eq. (1), the derivative at some moment ¢
is given with the following formula:

0 oT 2
2 =
az( 7 )3Z)i Az;

T —T; T; — Ty
Ar(T; — — A (T;_ _
7( z+1/2)A 7(T; 1/2)A2i+Azi_1 ,

“

Zisl + AZ;

where i enumerates level elements following the spatial coordinate z. The approximate derivatives
for equation (3) is given with similar formula. In case of complete Richards equation (2), the
derivative at some moment # is given with the following formula:

ow
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One may note that these numeric estimates of the right-hand sides of the equations (1), (2)

and (3) are linear functions of A7, Aw and y. Thus, these functions are differentiable w.r.t. the

or ow and %W

coefficients A7, Aw and y. Once one can calculate partial deivatives 95 I o there is a
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way to employ chain rule for calculating gradients of a loss function w.r.t. parameters 6,,., 6,,, and
6,. In simple case of diffusion equations (1) or (3), one can compute the gradients of loss function
L (X, Ax, 0,) w.r.t. neural network parameters 6, the following way:

oL oL 0X 0Ax NN
— = — X X . ) (6)
89,1X 0X 6/1)(’1\/}\] 60,1X

where X is a substitute for 7 or W depending on the equation, Ax, n n is the coefficient approximated

with neural network F (X, 6,,), 0,4, are the parameters of the network. The term ‘g—§ is the

derivative of MSE (x) or MAPE (x) w.r.t. x; the term 612% is calculated using the derivative

OAx,NN
30,
backpropagation scheme common for artificial neural networks. The whole scheme presented

of an explicit form (4) or (5) depending on the scenario; the term is calculated following
in eq. (6) is essentially backpropagation rule for artificial neural networks with additional custom
operation, namely numerical integration using explicit finite difference scheme (eq. 4 or 5). Figure 1
illustrates this approach in a simplified manner.

Using the approach described above for calculating the gradients of the loss functions
L (Fyn,x (X,0x)) w.r.t. parameters fx, we optimize it using stochastic gradient optimization
methods. We employ Adam optimizer [4] in this study.

As mentioned in Section 2, the loss function represents the discrepancy between the numerical
solutions of a PDE (1, 3 or 2) using known coefficients A1 ;rye, Aw true and y;ryue and the ones

approximated by neural networks: A7 nyn, Aw.nn and yyn. Considering the evolutions being
X
o
derivative estimates multiplied by dr in case of explicit Euler integration scheme. Since dt is

partial derivatives integrated numerically, one may note that the integration is a sum of a

a constant scalar, the loss functions and their gradients are just scaled by df compared to those
calculated as a discrepancy between partial derivatives OXirue gnd 9XNN. - Thus, instead of X

ot ot
evolution errors, in this study, we used linear combination of mean absolute percentage error

(M APE) and mean squared error (M SE) of partial derivatives of the solutions X;,,. and Xy as
loss function:

aXNN 8Xtrue
ot 7 ot

L =amse X MSE ( @)

OXyn OX,
)+a/mape><MAPE( ALl ﬂ)

ot ot
where @5 and @ynape are MSE and M APE loss coefficients correspondingly, and they are the
hyperparameters of our method.

In the second and third scenarios, we also used physics-imposed regularizations that represent

physics-prescribed constraints mentioned in Section 2.1. Here are the regularization terms (written
for Aw):

-[:reg,zp =azp X ’FNN,/IW (W = O)’ 5 (8)
Lreg,neg = Qneg X Z |FNN,/lW (W)| s (9)
FNN,ay, (W)<0
OFNN A (W)
Lreg.dp = @ap X ‘8—‘4?/ , (10)
OFNN 1y (W)

W <0
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where L, ¢q -p is the zero-point regularization term corresponding to the constraint Ay (0) = 0;
L eg.neg corresponds to the constraint Ay > 0; the term L, 4, is called derivative penalty and
corresponds to the constraint %’l—vy > 0; azp, neg and @y, are regularization coefficients that
are hyperparameters of the method. Note that we added derivative penalty (10) only in the third
scenario since the tasks regarding the diffusion equations (1,3) were optimized easily without this
regularization term. In case of Richards equation (2), we added regularization terms for y coeflicient
similar to egs. (8,9,10).

In all of the three scenarios, we simulated measurement errors by adding zero-centered Gaussian
noise to the "true" partial derivatives a)%%_ On the other hand, the additive noise may be considered
data augmentation in terms of standard machine learning framework. The noise we add is spatially
correlated and parameterized by correlation radius r., so the covariance matrix for level-wise noise
samples is parameterized by r.:

Izi-zjl

;=0te (11)

where ¢ is noise magnitude in uncorrelated case, i.e., the value of diagonal elements of %;;. Thus,
o and r. are hyperparameters that are not supposed to be optimized. Instead, one may study the
sensitivity of the method to the magnitude o~ and correlation radius 7. to predict the sensitivity to
errors in real measurements. One may also de-center the noise simulating systematic measurement
errors. In this study, we did not explore the full range of available noise options. However, the
option we exploited is reasonable when simulating high-quality instruments‘ errors in an accurately
designed field experiment.

2.3 Ground truth options

In the first scenario, we model heat diffusion in soil integrating eq. (1) within the framework
described above. In this scenario, we define At ;4. by the following options:

AT,true = anP(bT)a (12)
AT irue = aexp(bT) * M (13)
(=1 -tanh(e(T - Tip))), (14)
Ar(T) = ae?T s« l+ are??T « (1-2),

where a, b, C, k, ay, a», by, by, Ty, and € are human-defined parameters characterizing the features
of Ar. In particular, € characterizes the smoothness of the thresholding behavior; T;;, characterizes
the location of the threshold. In this study, we set Ty, = 5°C, and tested two cases: € =2 and € = 6.
In Figure 2, we present the diagrams of the ground truth forms of A7 in the first scenario.

In case of liquid water diffusivity Aw ;4. (W) and hydraulic conductivity ;. (W) coefficients
in the second and third scenarios, we used widely accepted functions proposed by Mualem [2] and
van Genuchten [1]:

Ymax(1 —m) 1/2-1/m [ 1/m)_m l/m)m ]
A W) = w 1-w 1-w -2 15
W,true( ) CYm(Wmax — Wmin) ( + ( ( )

IW.irie (W) = Ymax W2 [ 1= (1 W“’")m]z, (16)
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Figure 2: The shape of "true" thermal conductivity At ;4. (T): (a) in case of eq. (12), (b) in case of eq. (13),
and (c,d) in case of eq. (14): soft and strong threshold correspondingly.

where Ymax, M, Winax, Wiin and @ are the parameters describing soil type. In this study, we
used the following values for the parameters: y;qx = 1.56 X 10% m = 0.5, al pha = 0.5,
Winax — Wmin = 0.5. In Figure 3, the above mentioned analytical representations of Aw ;. and
Yirue are presented.
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Figure 3: The shapes of "true" (a) liquid water diffusivity Aw ;. (W) and (b) hydraulic conductivity ¥;ye
in equations (2,3) in the second and third scenarios.

Worth being noted, that within the presented approach, one does not need to actually integrate

the continuous evolution of soil characteristics. In fact, the loss function (7) relies only on partial

derivatives %—f and %—‘;V of a time moment. Following stochastic optimization procedure, we generate
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abatch of T and W profiles simulating various evolution moments. With these profiles, we calculate
the partial derivatives using appropriate finite difference scheme (4) or (5). We then compute the
loss function in accordance with eqs. (7,8,9,10). Using backpropagation rule (6), we then compute
loss function gradients w.r.t. neural network parameters: 6,, in the first scenario; 6,,, in the
second scenario; 6,,, and 6, in the third scenario. We then apply stochastic gradient descent step
using Adam [4] optimizer.

In this study, we also employ the following techniques for stabilizing the training and faster
convergence: gradient clipping by global norm; gradient clipping by individual values; learning
rate scheduling using cosine SGDR schedule [5] with simulated annealing and exponential decay
of annealing magnitude; and exponential decay of noise magnitude o (see eq. (11)).

The architecture of the neural networks we use is the same for all of the three scenarios. We use
fully-connected artificial neural network (a.k.a. multilayer perceptron) with six layers. The layers
are wide enough for the network to have high enough expressive power for approximating functions
like (13). While designing the networks, we optimized its structural hyperparameters ensuring
its capability of approximating complicated functions by solving simple supervised problem with
target values generated by "true" forms like eqs. (12,14,13). In order to improve convergence, we
used Mish activation function [6] for all layers except the last one, where we used linear activation.

2.4 Quality assessment
We assess the quality of our method with the four quality measures:
e MAPE (1), where A is Ay in the first scenario and Ay in the second and third scenarios:
* MAPE (), which is applicable for the third scenario only;

* RMSE %—’f), where X is temperature 7 in the first scenario, and liquid water content W in

the second and third scenarios.

Here RMSE stands for "root mean squared error”, and MAPE (x) stands for "mean absolute
percentage error":

(xi,NN - xi,true)2,

N

~
1l
—

1
RMSE (x) = ||~

N
1 Xi, NN — X;
MAPE (x) = _Z ZLNN T Aitrue )
N =1 Xi,true T €
where x is the substitute for %—’f, Aorvy;iis afinite element index; € is a very small positive number

added for computational safety.

3. Experiments, results and discussion

Following the method and problem setups we presented in Section 2, we performed the opti-
mization of fully-connected neural networks approximating A7, Aw and 7y in three abovementioned
scenarios. Current code base of the study is written in Python 3.8.5. We used Tensorflow 2.4.0
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Scenario True parameter MAPE (1) MAPE (y) RMSE (%)
form

I-st,eq. (1) eq. (12) (fig. 2a) 8 x 107 - 4.6%x 1076

lI-st,eq. (1) eq. (13) (fig. 2b) 1.6 x 1073 - 7x107°

I-st,eq. (1) eq. (14); e =2 (fig. 2¢) 1.5x107* - 3.6x 107

I-st,eq. (1) eq. (14); e =6 (fig. 2d) 1.75x 1074 - 2.0x1074

2-nd, eq. (3) eq. (15) (fig. 3a) 2.3%x1072 - 7.7 %107

3-rd, eq. (2) egs. (16,15) (fig. 3a,b)  4.5x1072  48x1072  47x107°

Table 1: Quality of the presented approach assessed with measures described in Section 2.4.

library [7] for automatic differentiation and also for creating and optimizing neural networks. Com-
putations were performed on NVIDIA DGX Station equipped with GPU NVIDIA V100 (32GB).

In Table 1, we show the results of our method in all the three scenarios assessed in terms of
quality measures described in Section 2.4. In Figures 4,5,6, we also show qualitative results of
the approximations A7 yn, Aw,nyn and ynn in comparison with the true forms A7 tryes AW true
and y;r,e. In these diagrams, one may see a clear correspondence between "true" forms of the
coeflicients and their approximations with neural networks. This correspondence is supported by
the quantitative results shown in tab. 1: MAPE (1) is usually of order 1072 or better (lower). In
case of the third scenario, the optimization of y network Fyn (W, Qy) lacks convergence out-of-
the-box. Most probable cause for that is the difference in orders of magnitude of the coefficients
Aw and y and in the corresponding terms of Richards equation (2). At the same time, accurate
hyperparameters tuning helps stabilizing the training. We found that the values of regularization
coeflicients in (egs. 8,9,10) delivers major improvement in the Fyyn , training. However, there is
still a room for improvement in the convergence of y network within the third scenario.

4. Conclusions

In this work, we presented a novel framework for the identification of partial differential
equations meaning approximating their coefficients in case they may be represented as functions of
these PDE solutions themselves. We demonstrated the way one may employ differentiable functions
in this problem. In our study, we used the functions of a specific class, namely artificial neural
networks, known to be capable of approximating a broad range of various dependencies (a.k.a.
universal approximators). However, there is no particular reason for limiting the class of functions
since the approach we demonstrated in this study works perfectly with any kind of differentiable
functions. For example, one may fit widely accepted parametric functions (e.g., [1-3]), thus
replacing complicated in-lab measurements of soil characteristics by field measurements of 7" and
W profiles. This kind of experiment setup may provide much higher accuracy and reliable statistcal
significance due to the opportunity for automatic measurements.

We demonstrated the capabilities of our approach in the case of PDEs known to describe the
evolution of soil characteristics in climate models. Our results show that the method we presented
delivers approximations with high accuracy without prior knowledge about the exact form of the
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Figure 4: A7 (T) approximation qualitative results within the first scenario: (a) in case of the true form
AT .true given by eq. (12); (b) in case of the true form Ar ;4. given by eq. (13); (¢) in case of the true form
AT true given by eq. (14) with smooth threshold (e = 2); (d) in case of the true form A7 ;4. given by eq. (14)

with sharp threshold (e = 6).
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Figure 6: Qualitative results of Ay yn and yy N approximation within the third scenario in case of the true
forms Aw rue and ysrye given by egs. (15),(16)

identified coefficients. The only assumption about these coefficients is that they may be represented
by some differentiable functions of the PDE solution. In contrast to well-known machine learning
approach, our method does not require target variable values, meaning coefficients to identify. This
is particularly convenient in case the coefficients are too expensive to measure. Instead, one may rely
on the measured evolution of the characteristics described by the PDEs, that are usually measurable.

In this work, we found, that in some particular cases, the optimization lacks convergence,
thus, there is a room for improvement. Most promising way for it is hyperparameters optimization,
preferably focusing on the right balance of regularization coefficients. We also demonstrated
that physics-prescribed constraints, imposed in a form of regularization terms, may improve the
convergence of the neural networks approximating PDE coefficients.

Our approach is not limited by the land surface scheme of climate models. One may apply
the same method in other problems involving PDE systems with funtional coefficients depending
on the PDE system solution. The approach we presented in this study may be particularly fruitful
when developing parameterizations of turbulent fluxes in the atmosphere, in the ocean or in the
boundary layer. However, there always will be a trade-off between the convenience and the accuracy
of our method, and the interpretability of the acquired solutions. Also, our approach is essentially
based on machine learning framework, thus, the identified coefficients may not be quite accurate in
variables range supported insufficiently by training sample.
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