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The calculation of one-loop Wilson coefficients for general Beyond the Standard Model (BSM)
scenarios is a technical challenge often addressed by doing long and error prone analytical calcu-
lations by hand. Several software programs already provide squared amplitude calculations at the
loop-level, but few of them are also able to derive general loop-level Wilson coefficients necessary
e.g. for the study of quark decays in flavor physics. MARTY, a computer program that automates
tree-level and one-loop perturbative calculations for general BSM scenarios can in particular be
used to obtain such Wilson coefficients. We present in details the simple user interface allowing
to derive common Wilson coefficients in MARTY, and the most general use case of MARTY to extract
the coefficient of any effective operator.
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1. Introduction

Automated calculations beyond the Standard Model have always been a challenge, in particular
at the loop level. A lot of software development work has been dedicated to this particular issue
in the past decades, with the use of symbolic computation frameworks required for this type of
theoretical calculations. Open-source codes implementing their own symbolic computation mod-
ules exist such as LanHEP [1] for the vertex derivation from the Lagrangian, or CompHEP [2] and
CalcHEP [3] that automate the calculation of tree-level squared amplitudes in a variety of BSM
scenarios. Finally, MadGraph_aMC@NLO [4, 5] is also open-source and provides tree-level and one-
loop calculation facilities for squared amplitudes. If Mathematica [6], a closed and commercial
computer algebra system, can be used, several other packages exist such as FeynRules [7, 8],
FeynArts/FormCalc [9, 10] that make use of FORM [11], SARAH [12] that was initially special-
ized for supersymmetric (SUSY) models, or packages also dedicated to the Wilson coefficients
calculations e.g. FormFlavor [13] or FlavorKit [14].
MARTY [15] is a public C++ program, using its own symbolic computation machinery, automat-

ing the calculation of amplitudes, squared amplitudes and Wilson coefficients up to the one-loop
level for a very large variety of BSM scenarios. A comprehensive documentation is available for
MARTY, including manuals [16, 17] and an interactive HTML documentation [18]. All the publicly
available material related to MARTY (code, publications, talks, documentation, etc) can be found on
the website [19].

The automated analytical calculation of one-loop Wilson coefficients for general BSM sce-
narios, in particular up to dimension-6 operators (with four fermions), is currently not provided
by free-to-use packages other than MARTY. In this conference paper, we present the main steps to
calculate such quantities in any model that can be built with MARTY (for more details about model
building in MARTY see [16, 20]). The procedure is fully general and allows users to derive for exam-
ple the loop-level Wilson coefficients relevant for flavor physics, including for (chromo-)magnetic
operators and Δ𝐹 = 1, 2 dimension-6 operators for e.g. 𝑏 → 𝑠 transitions. Section 2 introduces
definitions important to understand what Wilson coefficients are in MARTY, and section 3 presents
the main features necessary to extract these quantities for any BSM model. While [21] was mainly
focusing on Wilson coefficients for flavor physics giving one complete example, here we highlight
the general the general procedure and discuss the extension to general Wilson coefficients.

2. Definitions in MARTY

2.1 Generalities

Wilson coefficients are symbolic scalar expressions in front of operator structures in MARTY’s
amplitudes. In Effective Field Theories (EFT), amplitudes are the matrix elements of an effective
Hamiltonian

H𝑒 𝑓 𝑓 ≡
∑︁
𝑖

𝐶𝑖Ô𝑖 , (1)
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with Ô𝑖 effective operators and 𝐶𝑖 their respective Wilson coefficients. The transition amplitude
between an initial state 𝑖 and a final state 𝑓 is defined as the matrix element of this Hamiltonian:

𝑖M(𝑖 → 𝑓 ) = ⟨ 𝑓 | (−𝑖H𝑒 𝑓 𝑓 ) |𝑖⟩ = −𝑖
∑︁
𝑖

𝐶𝑖 ⟨ 𝑓 |Ô |𝑖⟩. (2)

The operator matrix elements ⟨ 𝑓 |Ô |𝑖⟩ may not in general be calculated perturbatively and can
contain long distance effects. However, the BSM dependence lies in the Wilson coefficients and a
perturbative calculation is enough to determine their respective values as explained in e.g. [22]. In
MARTY, a matrix element is simply a particular contraction of external fields. The general case for
an amplitude with 𝑁 external fields {Φ{𝐴𝐼 }

𝐼
}𝐼 with indices {𝐴𝐼 } can be written as

𝑖M = −𝑖𝛼
∑︁
𝑖

𝐶𝑖 · 𝑇 {𝐴1 }··· {𝐴𝑁 }
𝑖

· Φ{𝐴1 }
1 · · ·Φ{𝐴𝑁 }

𝑁
, (3)

with 𝑇 {𝐴1 }··· {𝐴𝑁 }
𝑖

all different tensors contracting the external fields to each other in the resulting
amplitude and 𝛼 a convention dependent constant. Therefore, by multiplying the amplitude by 𝑖/𝛼
the Wilson coefficients can be directly identified in front of the different matrix elements.
MARTY can decompose amplitudes in independent external field contractions and give the

coefficients in front, taking into account a global user-defined factor 𝛼. The matrix element (a.k.a
operator in MARTY) is therefore the contraction of fields in the amplitude (including possible tensor
couplings), and the Wilson coefficient is the scalar multiplicative factor in front. The particular
cases of dimension-5 and dimension-6 operators are discussed in the following.

LO vs. NLO As implicitly stated above, the matching used by MARTY is trivial and in particular no
explicit calculation is performed in the effective theory. This is because MARTY provides automated
procedures only for the Leading Order (LO), at tree-level or at the one-loop level. In order to obtain
Next-to-Leading Order (NLO) Wilson coefficients (e.g. a one-loop calculation for a process that is
non-zero at tree-level) one has to perform the same calculation in the effective theory and match the
result on the full theory. Although this can be done with MARTY, for now no automated procedure
allows us to obtain NLO coefficients. Such a procedure could be developed in the future. For
further numerical computations from the Wilson coefficients e.g. applying the Renormalization
Group Equations (RGE), dedicated open-source codes already exist such as SuperIso [23–26] for
flavor physics.

2.2 (Chromo-)Magnetic operators

Dimension-5 operators are defined for two fermions 𝜓1, 𝜓2 and a vector boson 𝐵 as

𝑂mag ≡
(
𝜓1(𝑇 𝐴)𝜎𝜇𝜈Γ𝜓2

)
𝐹

(𝐴)
𝜇𝜈 , (4)

with (𝑇 𝐴) the algebra generator when relevant, 𝐹 (𝐴)
𝜇𝜈 the field strength of 𝐵 and

Γ ∈
{
1, 𝛾5, 𝑃𝐿 , 𝑃𝑅

}
. (5)

To fully define a magnetic operator, a user therefore only has to choose one element picked in a
set of 4 elements. The algebra generator (𝑇 𝐴) does not have to be user defined as its presence is
determined by the particle types.

3
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2.3 4-fermions operators

Dimension-6 operators with fermions 𝜓1, 𝜓2, 𝜓3 and 𝜓4 are defined by operators of the type

𝑂𝑑=6 ≡ 𝑇𝑖 𝑗𝑘𝑙
(
𝜓1

𝑖
Γ𝐴𝜓

𝑗

2

) (
𝜓3

𝑘
Γ𝐵𝜓𝑙

4

)
, (6)

with Dirac couplings

Γ𝐴, Γ𝐵 ∈
{

1, 𝛾5, 𝑃𝐿 , 𝑃𝑅,

𝛾𝜇, 𝛾𝜇𝛾5, 𝛾𝜇𝑃𝐿 , 𝛾
𝜇𝑃𝑅,

𝜎𝜇𝜈 , 𝜎𝜇𝜈𝛾5, 𝜎𝜇𝜈𝑃𝐿 , 𝜎
𝜇𝜈𝑃𝑅}

,

(7)

with Γ𝐴 and Γ𝐵 contracting to leave no free Minkowski index. The indices 𝑖, 𝑗 , 𝑘 , and 𝑙 in equation 6
are gauge indices, contracted by 𝑇𝑖 𝑗𝑘𝑙 that can be of four main kinds:

𝑇𝑖 𝑗𝑘𝑙 = 𝛿𝑖 𝑗𝛿𝑘𝑙 ,

𝑇𝑖 𝑗𝑘𝑙 = 𝛿𝑖𝑙𝛿𝑘 𝑗 ,

𝑇𝑖 𝑗𝑘𝑙 = 𝛿𝑖𝑘𝛿 𝑗𝑙,

𝑇𝑖 𝑗𝑘𝑙 = 𝑇
𝐴
𝑖 𝑗𝑇

𝐴
𝑘𝑙 .

(8)

To fully define a dimension-6 operator, Γ𝐴, Γ𝐵 and 𝑇𝑖 𝑗𝑘𝑙 must therefore be provided.

3. The user interface

In this section the user interface to obtain the Wilson coefficients of the operators defined above
is presented. Four main steps have to be followed in MARTY:

• Options setup for the amplitude calculation.

• Amplitude calculation, including the decomposition on an operator basis.

• Definition of the operator of which the coefficient must be extracted.

• Extraction of the coefficient.

Considering e.g. a process 𝜓1 → 𝜓2𝐵 and a MARTY model in the model variable, the two first
steps can be performed using:

FeynOptions options;

Expr factor = ...; // Convention-dependent factor to be defined if needed

options.setWilsonOperatorCoefficient(factor);

vector<Wilson> wilsons = model.computeWilsonCoefficients(

OneLoop,

{Incoming("psi1"), Outgoing("psi2"), Outgoing("B")},

options);

4
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For the details on how to define the convention-dependent factor we refer to the user manual [16].
After the calculation, the wilsons variable contains the decomposed amplitude but work still needs
to be done to extract particular coefficients from the result as explained in the the next sections.

The fermion ordering option For 4-fermion operators, the order of external fermions in the
operator basis must be user-defined. From the initial order given when defining the external particles
of the calculation, the final order is defined as a permutation of the initial order. Considering a four
fermion process 𝜓1 → �̄�2𝜓3𝜓4, a fermion order (2, 0, 3, 1) corresponds to operators of the type

(𝜓3Γ
𝐴𝜓1) (𝜓4Γ

𝐵𝜓2), (9)

where Γ𝐴,𝐵 are generalized couplings. The indices are defined starting from 0, a valid permutation
is therefore a permutation of (0, 1, 2, 3). The fact that particles are incoming or outgoing is not
relevant for this ordering. Such orderings have to be defined in the options before the amplitude
calculation. In the example above the following option must be defined

options.setFermionOrder({2, 0, 3, 1});

3.1 Operator definition

For common operators, built-in functions exist to create them without having to explicitly
construct their explicit analytical expression.1 This is the case for magnetic dimension-5 operators
and dimension-6 operators with 4 fermions.

In order to easily define all possible operators for 𝑑 = 5 and 𝑑 = 6 discussed in section 2.2
and 2.3 respectively, the different Dirac and color couplings are stored in enumerations. These
enumerations are presented in tables 1 and 2 respectively.

Using the enumeration presented in table 1, the chromoMagneticOperator() method can be
used to build the relevant dimension-5 operators defined in equation 4 e.g. for 𝐶7 (𝑏 → 𝑠𝛾 decay)
or (𝑔 − 2)𝜇:

vector<Wilson> O_7 = chromoMagneticOperator(

model, wilsons, DiracCoupling::R);

// Fermion current (sigma P_R)

vector<Wilson> O_gm2 = chromoMagneticOperator(

model, wilsons, DiracCoupling::S);

// Fermion current (sigma)

A similar principle exists for the dimension-6 operators defined in equation 6, this time two
Dirac couplings must be given to define the two fermion currents:

1General operators can also be defined explicitly, see the user manual [16].

5



P
o
S
(
C
o
m
p
T
o
o
l
s
2
0
2
1
)
0
3
1

The MARTY user interface for the calculation of general Wilson coefficients Grégoire Uhlrich

Enumeration element Name Expression
DiracCoupling::S Scalar 1

DiracCoupling::P Pseudo-scalar 𝛾5

DiracCoupling::L Left 𝑃𝐿

DiracCoupling::R Right 𝑃𝑅

DiracCoupling::V Vector 𝛾𝜇

DiracCoupling::A Axial 𝛾𝜇𝛾5

DiracCoupling::VL Vector left 𝛾𝜇𝑃𝐿

DiracCoupling::VR Vector right 𝛾𝜇𝑃𝑅

DiracCoupling::T Tensor 𝜎𝜇𝜈

DiracCoupling::TA Tensor axial 𝜎𝜇𝜈𝛾5

DiracCoupling::TL Tensor left 𝜎𝜇𝜈𝑃𝐿

DiracCoupling::TR Tensor right 𝜎𝜇𝜈𝑃𝑅

Table 1: Dirac couplings available to define operator structures in MARTY.

Enumeration element Name Expression
ColorCoupling::Id Identity 𝛿𝑖 𝑗𝛿𝑘𝑙

ColorCoupling::Crossed Crossed 𝛿𝑖𝑙𝛿𝑘 𝑗

ColorCoupling::InvCrossed Crossed inversed 𝛿𝑖𝑘𝛿 𝑗𝑙

ColorCoupling::Generator Generator 𝑇 𝐴
𝑖 𝑗
𝑇 𝐴
𝑘𝑙

Table 2: Color couplings possible to define dimension-6 operators in MARTY. See equation 6 for the definition
of the indices 𝑖 𝑗 𝑘𝑙.

vector<Wilson> O_1 = dimension6Operator(model, wilsons,

DiracCoupling::L, DiracCoupling::R); // (P_L)x(P_R)

vector<Wilson> O_2 = dimension6Operator(model, wilsons,

DiracCoupling::VL, DiracCoupling::V); // (G^mu P_L)x(G_mu)

When a gauge tensor coupling of a dimension-6 operator is not trivial, it is possible to specify
another one giving the gauge group name ("C" for color group in the example) and an element of
the enumeration presented in table 2:

vector<Wilson> O1_crossed = dimension6Operator(model, wilsons,

DiracCoupling::L, DiracCoupling::R,

{"C", ColorCoupling::Crossed}

); // (P_L)_ij x (P_R)_ji

6
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3.2 Wilson coefficient extraction

Finally, after calculating the amplitude and building the relevant operators as previously dis-
cussed, the extraction of the final Wilson coefficients is very simple using the getWilsonCoefficient()
method:

Expr C7 = getWilsonCoefficient(wilsons, O_7);

Expr gm2 = getWilsonCoefficient(wilsons, O_gm2);

Expr C1 = getWilsonCoefficient(wilsons, O_1);

Expr C2 = getWilsonCoefficient(wilsons, O_2);

Expr C1p = getWilsonCoefficient(wilsons, O1_crossed);

The resulting variables are simple MARTY symbolic expressions and can therefore directly be
used for library generation and numerical evaluation as usual.2

3.3 Generalization of the operator definition

In MARTY it is also possible to extract Wilson coefficients of generic operators. The principle
is to create the analytical expression, in MARTY, of the operator of which the coefficient must be
extracted. Then, MARTY automatically searches in the amplitude for the user-defined operator and
extracts its coefficient. The creation of custom effective operators is very similar to the creation of
general Lagrangian terms and should feel familiar for a user already accustomed to model building
procedures in MARTY.

The momenta of a process need in general to be obtained from MARTY to define operators. This
can be done using:

vector<Tensor> p = wilsons.kinematics.getOrderedMomenta();

// p[0], p[1], p[2] are momenta p1, p2, p3 for a three particles process

To obtain the particles, tensors and indices, the procedure is the same as for model building.
In order to create gauge indices in the relevant vector spaces, it is necessary to specify the group (or
its name) and the irreducible representation (or a particle). For the example of a 𝑏 → 𝑠𝛾 process
this gives:

// The fields

Particle b = model.getParticle("b");

Particle s = model.getParticle("s");

Particle A = model.getParticle("A");

2For more details on this procedure see the simple example on the website https://marty.in2p3.fr/
gettingStarted.html or the user manual [16].
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// Additional tensors

Tensor gamma = dirac4.gamma;

// Index for the triplet (e.g. quark "b")

// in the SU(3) color group "C":

Index i = model.generateIndex("C", "b");

// Dirac and Minkowski indices

vector<Index> al = DiracIndices(2);

Index mu = MinkowskiIndex();

Once all objects have been retrieved from MARTY, the operator expression can be built explicitly
in a symbolic MARTY expression. Considering the example of the 𝑠(𝑝2) /𝐴(𝑝3)𝑏(𝑝1) operator, the
corresponding MARTY expression is:3

Expr Op = GetComplexConjugate(s({i, al[0]}, p[1]))*A(mu, p[2])

*gamma({+mu, al[0], al[1]})*b({i, al[1]}, p[0]);

Finally, the corresponding coefficient can be extracted by MARTY giving the operator previously
constructed:

Expr C = getWilsonCoefficient(wilsons, Op);

This procedure is completely general, is valid for all groups and representations, and allows
users to extract the Wilson coefficients of all operators that have not been explicitly implemented
in the simple user interface for 𝑑 = 5 and 𝑑 = 6 operators.

4. Conclusion

We presented the user interface in MARTY allowing one to extract in a simple way the Wilson
coefficients of 𝑑 = 5 and 𝑑 = 6 operators at the one-loop level. These coefficients are necessary for
the calculation of phenomenogically-motivated quantities such as e.g. (𝑔 − 2)𝜇 or the coefficients
of quark decays in flavor physics. Furthermore, we showed how to generalize the Wilson coefficient
extraction to any effective operator using a procedure similar to the Lagrangian construction in
MARTY.

We defined analytically the operators in section 2 by highlighting their specificity and the
minimum quantity of information required from a user to uniquely define them. Section 3 then
presented the interface to build these operators in a MARTY program and extract their coefficients
for a given process. In a few lines of code, it is possible to extract Wilson coefficients for 𝑑 = 5 and

3For signed indices such as Minkowski indices, it is necessary to specify if the index given to MARTY is up or down.
By default mu is down (e.g. 𝐴𝜇) and +mu is up (e.g. 𝐴𝜇).

8
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𝑑 = 6 operators that can directly be used by the library generation facility of MARTY for numerical
evaluation. With a reasonable amount of work, the Wilson coefficients of general operators can
also be obtained with MARTY using the generic operator definition features.

The procedures presented in this proceeding have two very important features:

• The code is completely model-independent. Once the procedure is set for the extraction of
one or several Wilson coefficients, changing the model in MARTY (considering that it has been
built) takes only one line and the program will execute in the exact same way.

• Downloading and installing MARTY, a free and open-source code, is a sufficient condition to
use all the features discussed here.

As it has already been showed for beauty quark decays in non-minimal flavor violating MSSM4

scenarios [27], the user interface for the automated extraction of Wilson coefficients with MARTY
will greatly facilitate the BSM analyses relying on such theoretical calculations in a large variety of
models.
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