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I present EOS, an open-source software dedicated to a variety of tasks in the processing of flavor
physics observables. EOS is written in C++ and offers both a C++ and a Python interface. It
is developed for three main tasks, the production of theoretical predictions for flavor physics
observables; the inference of theoretical parameters from an extensible database of likelihoods;
and the production of Monte Carlo samples of flavor processes for sensitivity studies.

Computational Tools for High Energy Physics and Cosmology (CompTools2021)
22-26 November 2021
Institut de Physique des 2 Infinis (IP2I), Lyon, France

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:meril.reboud@tum.de
https://pos.sissa.it/


P
o
S
(
C
o
m
p
T
o
o
l
s
2
0
2
1
)
0
1
2

EOS – A Software for Flavor Physics Phenomenology Méril Reboud

1. Introduction

Recent phenomenological analyses of flavor physics show a consistent pattern of tasks. Large
sets of experimental measurements are first analyzed through the prism of improved theoretical
models. New measurements are then usually suggested to further test the viability of these models,
in accordance to the Standard Model or in new physics scenarios. These tasks mainly require

• the production of publication-quality theory predictions for the experimental observables;

• the inference of theory parameters from an extensible database of likelihoods;

• and possibly the production of Monte Carlo samples for sensitivity studies.

EOS1 [1, 2] has been developed since 2011 [3, 4] to perform these tasks and has already been used in
about 30 peer-reviewed and published phenomenological studies [5–33]. Besides these applications
in phenomenology, EOS also is used by the collaborations of the CDF [34], the CMS [35, 36] and
the LHCb [37–42] experiments and is now part of the Belle II analysis framework [43].

EOS is not the only openly available flavor software. It competes, amongst others, with flavio [44],
SuperIso [45, 46], HEPfit [47] and FlavBit [48]. The main distinctions between EOS and these
programs are:

• the simultaneous inference of hadronic and new physics parameters;

• the modularity of hadronic matrix elements, i.e., the possibility to select from various hadronic
models and parametrizations at run time;

• the production of pseudo events for sensitivity studies; and

• the implementation of QCD sum rules for the prediction of hadronic matrix elements.

EOS can be installed using Python package installer:� �
python3 -m pip install --user eoshep� �

The EOS Python module can then be accessed, e.g. within a Jupyter notebook, using� �
import eos� �

EOS documentation [2, 49] includes basic tutorials, detailed examples for advanced use, and auto-
matically updated lists of observables, parameters and constraints.

2. Usage and examples

2.1 Predictions and Uncertainties

Observables are one of the main classes in EOS. They are usually defined for several theoretical
models, modifiable at run time via a set of options. The numerical evaluation of observables
requires a kinematic specification and a set of values for all the parameters.

1https://github.com/eos/eos
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Figure 1: Differential branching ratio of 𝐵 → 𝐷ℓ𝜈ℓ for different leptons. The uncertainty bands contain
68% of the samples obtained by varying the parametrization of the hadronic form factors.

� �
eos.Observable.make('B->Dlnu::BR', eos.Parameters(),
                                   eos.Kinematics({'q2_min': 0.01, 'q2_max': 11.62}),
                                   eos.Options({'l': 'mu', 'model': 'SM'})).evaluate()� �

Here, the integrated branching ratio of 𝐵 → 𝐷𝜇𝜈𝜇 is evaluated between 0.01 and 11.62 GeV2 in the
Standard Model with EOS default parameters. To ensure a fast numerical evaluation of observables,
EOS uses multiple threads and reuses objects that are shared between multiple observables. An
updated list of built-in observables and parameters can be found in the online documentation [49].
The visualization of observables can also be performed via a versatile matplotlib-based [50]
plotting framework. Evaluating the differential observable B->Dlnu::dBR/dq2 for several values
of 𝑞2 yields, for example, the middle solid lines of Figure 1.

EOS bases the estimation of theory uncertainties on Monte Carlo techniques and relies on the
external pypmc library [51]. The sampling of the probability density functions is performed using
adaptive Metropolis-Hastings [52–54] and Population Monte Carlo (PMC) [55, 56] sampling.
Once the user has provided the set of parameters to be varied and the experimental or theoretical
likelihoods to constrain them, samples can be drawn from the joint posterior to predict uncertainties
for the observables. Pursuing with the 𝐵 → 𝐷ℓ𝜈 example, the main source of uncertainty is due
to the hadronic form factors that describe the 𝐵 → 𝐷 transition. Using the parametrization of
Ref. [57] and independent constraints obtained from lattice QCD simulations by the HPQCD [58]
and FNAL/MILC [59], we obtain the uncertainty band presented in Figure 1.
A list of built-in constraints can be found online [49]; new constraints can also be added via the
manual_constraints method, as also described in the documentation.

2.2 Parameter Inference

Parameters inference is theoretically equivalent to uncertainty estimation, and both are treated in
the same way in EOS. The parameters of interest are added to the list of varied parameters (which
become nuisance parameters) and the experimental measurements from which parameters are to be
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Figure 2: Inference of |𝑉𝑐𝑏 | from experimental measurements of 𝐵 → 𝐷ℓ𝜈: (left) 2D-marginal joint
posterior of |𝑉𝑐𝑏 | and 𝑓 �̄�→𝐷

+ (0) (68% and 95% probability contours) and (right) juxtaposition of the bin-
averaged measurements of 𝐵 → 𝐷ℓ𝜈 and the 68% uncertainty band estimated by sampling the posterior
distribution.

inferred are added to the list of likelihoods. The posterior distribution of the parameters can again
be explored using Monte Carlo techniques.
In the case of multimodal distributions, a single Markov chain is usually insufficient to explore the
entire posterior distribution. EOS therefore implements PMC sampling, where an initial proposal
distribution (obtained for example by running multiple Markov chains) is adjusted stepwise to match
the posterior distribution. This allows the user to produce high quality, statistically uncorrelated
samples from the posterior distribution.
For example, Belle measurements of 𝐵 → 𝐷ℓ𝜈 differential branching ratios can be used to extract
the Cabibbo-Kobayashi-Maskawa matrix element |𝑉𝑐𝑏 | [60]. The posterior samples are genuine
Python array and can be analyzed using EOS plotting framework as presented in Figure 1, left
panel. The uncertainties obtained on |𝑉𝑐𝑏 | and on the observables include both the experimental
uncertainties due to branching ratio measurements and the theoretical uncertainties due to the
hadronic form factors.

2.3 Simulation of Pseudo-events

Once a model is defined, it is often useful to investigate the experimental sensitivity to new
observables that show, for example, a reduced theoretical uncertainty. EOS therefore contains built-
in probability density functions (PDF) from which pseudo-events can be simulated. To conclude
the 𝐵 → 𝐷ℓ𝜈 example, we generate samples from the one-dimensional PDF that describes the
𝑞2-differential decay distribution for ℓ = 𝜇 and ℓ = 𝜏. The samples are shown in Figure 3 overlaid
with the implemented PDF for which excellent agreement is found.

3. Conclusion

EOS is a multipurpose flavor physics software. Its large and constantly growing number of built-in
observables, parameters and constraints2 allows a very wide spectrum of studies. These studies

2The updated lists can be found on EOS website [49]
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Figure 3: Distribution of 𝐵 → 𝐷ℓ𝜈ℓ events for ℓ = 𝜇, 𝜏, as implemented in EOS (solid lines) and as obtained
from Markov Chain Monte Carlo importance sampling (histograms).

range from the inference of theory parameters from experimental measurements to sensitivity
studies of new observables in new physics scenarios.
EOS developers welcome new contributors, feedback, questions and wishes on https://github.
com/eos/eos.
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