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1. Introduction

The so-called standard or concordance model of cosmology (aka ΛCDM) became consoli-
dated only in the mid nineties, [1–4]. Apart from the unverified existence of dark matter (DM),
the theoretical status of the cosmological constant (CC) term, Λ, in Einstein’s equations is no less
worrisome. The notion of vacuum energy density (VED) in cosmology has been considered by
theoretical physics and cosmology for more than half of a century, specially with the breakthrough
of Quantum Theory and in general with the development of the formal aspects of QFT. The relation
with the cosmological terms reads ρvac = Λ/(8πGN) [5], where GN is Newton’s constant. Mea-
surements of the CC term performed in the last decades using data from distant type Ia supernovae
(SnIa) [6] and from the anisotropies of the cosmic microwave background (CMB) [7], have put the
foundations of the ΛCDM [2].

While the Λ-term in the gravitational field equations was introduced by A. Einstein 105 years
ago [8], the "cosmological constant problem" (CCP) as such was first formulated 50 years later
by Y. B. Zeldovich [9]. The CCP is the chocking realization that the manyfold successes of QFT
in the world of the elementary particles turn into a blatant fiasco in the realm of gravity. This is
because the usual QFT treatment predicts a value for ρvac which is excruciatingly much larger than
that of the current critical density of the universe and that of matter at present, ρ0

m [10–16].

Long after the discovery of the accelerated expansion of the universe a plethora of new models
invaded the cosmology market, namely the ‘dark energy’ (DE) models, which appeared in different
contexts and formulations, see e.g. [17] and references therein. The idea was to substitute the Λ-
term in Einstein’s equations by a new entity behaving in a similar way and possibly enjoying of
better theoretical properties. This is how the vacuum energy option as a possible explanation for the
speeding up of the universe became undermined and partly abandoned for a long time as if it were
the only proposal afflicted by the fine tuning problem. However, the criticisms against the vacuum
option usually have nothing better to offer. The vacuum is in fact the most fundamental concept of
QFT and hence we should expect that a proper description of the CCP using the machinery of QFT
in curved spacetime must eventually provide the clue to solving the cosmological constant problem
from fundamental physics [16]. It is usually mentioned that Quantum Gravity (QG) should have
the clue to the CCP. However, QG does not exist as a well defined theory yet, as it is well-known.
However, our point of view is that it should be possible to tackle the CCP already at the level
of quantum fields in a classical gravitational background [18], and this is the point of view put
forward in [19, 20], which will be reviewed here – see also [16] for more details. For related
studies about renormalization in curved spacetime, see e.g. [21–26].

In the context under study one finds that ρvac appears (in the current universe) as a dominant
term plus a dynamical component which varies as ∼ νeffH2m2

Pl, with νeff a small (dimensionless)
and computable coefficient (playing the role of β -function coefficient of the VED running) and mPl

is the usual Planck mass (mPl = G−1/2
N ). Such a structure constitutes the Running Vacuum Model

(RVM), see [14–16] and references therein. A model with the aforementioned features remains
close to the ΛCDM for long periods of the cosmic evolution and hence it can provide essentially
the same results as in the ΛCDM, up to some small dynamical features. These, however, turn out
to be crucial to lessen the H0 and σ8 tensions afflicting the latter [27–35].
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2. Scalar field energy-momentum tensor in a curved background

The Einstein-Hilbert (EH) action for gravity plus matter reads

SEH+m =
1

16πGN

�
d4x
√
−gR−

�
d4x
√
−gρΛ +Sm . (2.1)

The matter action Sm will be specified shortly. The term ρΛ is at this point just a bare parameter of
the EH action, as the gravitational coupling GN itself. The gravitational field equations emerging
from the variation of the action (2.1) can be conveniently written as follows:

Gµν

8πGN
=−ρΛgµν +T m

µν , (2.2)

As usual, Gµν = Rµν − (1/2)gµνR is Einstein’s tensor and T m
µν is the energy-momentum tensor

(EMT for short) of matter. At this point we assume that there is only one matter quantum field
contribution to the EMT defined by a real scalar field, φ . We call it T φ

µν . Thus,

S[φ ] =−
�

d4x
√
−g

(
1
2

gµν
∂µφ∂νφ +

1
2
(m2 +ξ R)φ 2

)
. (2.3)

Here ξ is the non-minimal coupling of φ to gravity. We recall that for the particular value ξ = 1/6,
the massless (m = 0) action is conformally invariant. We will, however, keep ξ unspecified. In
addition, we assume that φ has no classical potential, except the mass term. This implies that φ has
no self-interactions. In this study, we wish to focus on the zero-point energy (ZPE) of φ only. Even
with this simplification, the vacuum problem is nontrivial at all in curved spacetime.

The classical EMT follows immediately from the action (2.3):

T φ

µν =− 2√
−g

δS[φ ]
δgµν

= (1−2ξ )∂µφ∂νφ +

(
2ξ − 1

2

)
gµν∂

σ
φ∂σ φ

−2ξ φ∇µ∇νφ +2ξ gµνφ�φ +ξ Gµνφ
2− 1

2
m2gµνφ

2.

(2.4)

The Klein-Gordon (KG) equation for φ in curved spacetime follows from varying the above action
with respect to φ :

(�−m2−ξ R)φ = 0 , (2.5)

where �φ = gµν∇µ∇νφ = (−g)−1/2∂µ (
√
−ggµν∂νφ) is the d’Alembertian operator in curved

coordinates.

3. Renormalization of the VED in FLRW spacetime: absence of ∼ m4 contributions

To address the vacuum energy problem in Friedmann-Lemaître-Robertson-Walker (FLRW)
spacetime we assume a spatially flat three-dimensional geometry. In order to compute the VED we
must quantize the matter field φ and then determine the vacuum expectation value (VEV) of the
EMT, Eq. (2.4). However, because of the expanding curved background in the FLRW context an
exact solution of the field modes of the theory is not possible since it corresponds to an anharmonic
oscillator with time-dependent frequencies. Still, the VEV can be computed with respect to the
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adiabatic vacuum [18]. The latter is an approximation to the true vacuum in which an asymptotic
solution of the field modes at high frequency is possible. It is a situation similar to geometrical
optics, where solutions of the wave equation of an inhomogeneous medium can be found at high
frequency, hence at short lengths, through a WKB expansion of the solution. In the present case,
we have to find a WKB expansion of the Klein-Gordon equation (2.5). The expansion is formally
divergent and must be renormalized by an appropriate regulator. To remove the UV-divergences,
we could use the MS scheme with dimensional regularization (DR) and obtain a renormalized ZPE,
but we prefer a more physical alternative. We start from the on-shell value of the vacuum EMT
and perform a subtraction at an arbitrary mass scale M, which plays the role of renormalization
point. The subtraction will remove divergences and the result will depend on purely geometric
contributions, i.e. the higher derivative (HD) terms proportional to R, R2, RµνRµν etc., hence to H2

and Ḣ (including higher powers of these quantities). There will be, however, some constant terms
proportional to powers of the mass and of the subtraction scale M, in particular terms of order
∼ m4. These terms can be dangerous. However, let us emphasize that the VED is not just the 00th
component of the renormalized vacuum part of the EMT but the sum of such component and the
renormalized parameter ρΛ. In what follows we provide the main results, but refrain from entering
technical issues and cumbersome computational details, which would lead us too far for this short
presentation. For a more expanded exposition, see [16] as well as the technically comprehensive
articles [19, 20].

Taking into account that the only adiabatic orders that are divergent in the case of the EMT
in n = 4 spacetime dimensions are those up to order adiabatic 4th, the subtraction at the scale M
is performed only up to this order. The terms beyond the 4th order are finite. The adiabatically
renormalized EMT in this context therefore reads

〈T δφ

µν 〉ren(M) = 〈T δφ

µν 〉(m)−〈T δφ

µν 〉(0−4)(M) . (3.1)

The on-shell value of the EMT can be computed of course at any order. Let us first consider
Minkowskian space. Performing the subtraction (3.1) for the 00th component, we find [19, 20]

〈T δφ

00 〉
Mink
ren (M) =

1
128π2

(
−M4 +4m2M2−3m4 +2m4 ln

m2

M2

)
. (3.2)

Obviously, in the absence of the subtraction (3.1) the result would not be finite of its own accord.
The renormalized and well-defined VED can now be constructed from the sum of the renormalized
ρΛ term in the EH action and the renormalized ZPE given above:

ρ
Mink
vac = ρΛ(M)+ 〈T δφ

00 〉
Mink
ren (M) =ρΛ(M)+

1
128π2

(
−M4 +4m2M2−3m4 +2m4 ln

m2

M2

)
=ρΛ(M)+

m4

64π2

(
ln

m2

M2 −
3
2
− M4

2m4 +
2M2

m2

)
.

(3.3)

The last equality in (3.3) is only to show in a more transparent way that such an expression boils
down to the result obtained within the MS scheme for M2 � m2, see [16]. In fact, in this limit
only the logarithmic term and an additive constant survives, as it is characteristic of the MS. Now
because the starting point is the sum of the bare parameter ρΛ and the unrenormalized ZPE, the
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expression (3.3) must be scale-invariant since it just corresponds to renormalizing a bare coupling1.
Thereupon on acting with Md/M on both sides of (3.3) must yield zero. This tells us what is the
β -function for ρΛ in the adiabatic renormalization scheme:

βρΛ
= M

dρΛ(M)

dM
=− 1

128π2

(
−4M4 +8m2M2−4m4)= 1

2(4π)2 (M
2−m2)2 . (3.4)

For M2� m2 it reduces to the β -function for ρΛ in the MS scheme [16]. As it is obvious, none of
these formulas depend on the expansion rate H and therefore do not contain an inch of cosmolog-
ical physics. The cosmological constant cannot be addressed in Minkowski spacetime, of course,
although the above formula for βρΛ

remains upright in the general case. Now the RGE for the VED
in cosmological spacetime is not just the RGE for ρΛ. Once more we need the ZPE, but now in
FLRW background.

So, let us next move to the renormalized result in curved spacetime and complete the job. The
result will now depend on the Hubble rate and will be finite. Hence some physical considerations
will be possible concerning the physical vacuum energy. Computing the renormalized ZPE for
FLRW spacetime involves, however, a considerable amount of work which nevertheless can be
expressed in a rather compact form. The final result is [19]

〈T δφ

00 〉ren(M) =
a2

128π2

(
−M4 +4m2M2−3m4 +2m4 ln

m2

M2

)
−
(

ξ − 1
6

)
3H 2

16π2

(
m2−M2−m2 ln

m2

M2

)
+

(
ξ − 1

6

)2 9
(
2H ′′H −H ′2−3H 4

)
16π2a2 ln

m2

M2 + . . .

(3.5)

where dots stand just for higher adiabatic orders. Notice the explicit dependence of this result on
the Hubble rate. For a = 1 (H = 0) the previous expression exactly reduces to the Minkowskian
result (3.2), as it should be. The renormalized VED now follows from the sum of the renormalized
ρΛ in the action and the renormalized ZPE, Eq. (3.5):

ρvac(M,H) = ρΛ(M)+
〈T δφ

00 〉ren(M)

a2

= ρΛ(M)+
1

128π2

(
−M4 +4m2M2−3m4 +2m4 ln

m2

M2

)
−
(

ξ − 1
6

)
3H2

16π2

(
m2−M2−m2 ln

m2

M2

)
−
(

ξ − 1
6

)2 9
16π2

(
Ḣ2−2HḦ−6H2Ḣ

)
ln

m2

M2 + · · ·

(3.6)

Here we have expressed the result in terms of the ordinary Hubble rate in cosmic time, where we
recall that H = aH, and one can show from a simple calculation that 2H ′′H −H ′2− 3H 4 =

1This is so because in Minkowski spacetime there is nothing else in the action apart from a constant term and the
matter Lagrangian. In curved spacetime, however, we have in addition the curvature term in the EH action plus the
geometric HD terms. The renormalization of the VED is then not just the renormalization of a bare term, as in fact the
VED becomes explicitly dependent on H and its derivatives, as well as on M. The VED in FLRW spacetime indeed
evolves independently with H and M, see Eq. (3.6) below. Only the full effective action (involving the classic part plus
the vacuum effects) is scale-independent, i.e. RG-invariant [20].
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−a4
(
Ḣ2−2HḦ−6H2Ḣ

)
. Moreover, in the arguments of the renormalized ρvac(M,H) we have

remarked explicitly the dependence both on M and H. Obviously, it also depends on the derivatives
of H, but we omit them in the arguments for brevity sake. The dependence of the VED on H is
crucial and is inherited from that of the renormalized ZPE in curved spacetime. Of course, in the
Minkowskian case such dependence was not possible since H = 0.

We should now stress that Eq. (3.4) and hence the scale-independence of the sum of terms on
the r.h.s. of (3.3) holds good also in FLRW spacetime since that equation is completely independent
of H. This can be work out explicitly by rewriting Einstein’s equations (2.2) using the renormalized
parameters and including the higher derivative tensor H(1)

µν , which is necessary for renormalization
purposes [18]. The generalized Einstein’s equations in the presence of higher derivative (HD) terms
in the vacuum action read

Gµν

8πGN(M)
+α(M)H(1)

µν = 〈T vac
µν 〉ren(M)+ · · ·=−ρΛ(M)gµν + 〈T δφ

µν 〉ren(M)+ · · · (3.7)

We have written only the vacuum part of the EMT since we want to perform a subtraction of
Eq. (3.7) at the two scale values M and M0 and hence the background contribution of the field φ

(and any other one, indicated above by . . . ) will cancel. Using on its r.h.s. the explicit form for
〈T δφ

00 〉ren(M) as given by Eq, (3.5) as well as the explicit forms of G00 and H(1)
00 in the FLRW metric

(cf. Appendix A1 of [20], for example), we may perform such subtraction and project the 00th
component of this expression. Among other relations involving the couplings α and GN , we find
that the following quantity involving ρΛ is scale invariant [16]:

ρΛ(M)+
1

128π2

(
−M4 +4m2M2−3m4 +2m4 ln

m2

M2

)
=ρΛ(M0)+

1
128π2

(
−M4

0 +4m2M2
0 −3m4 +2m4 ln

m2

M2
0

)
.

(3.8)

For H = 0 Eq. (3.6) reduces to the Minkowskian result (3.3). However, the latter must necessarily
vanish when gravity is turned on, i.e. when we impose the generalized Einstein’s equations (3.7). In
fact, the l.h.s. of these equations exactly vanishes, in Minkowski space and so must vanish its r.h.s.,
that is: −ρΛ(M)ηµν + 〈T δφ

µν 〉ren(M) = 0. The 00th component reads ρΛ(M)+ 〈T δφ

00 〉ren(M) = 0,
which expresses vanishing VED in Minkowski vacuum, as it should be.

From the foregoing, it is clear that Eq.(3.4) is still the correct β -function for ρΛ also for curved
spacetime. Despite the quantity (3.8) is identically zero in Minkowski spacetime, it is no longer
zero in curved spacetime. Such expression remains scale-invariant and hence acting on it with
Md/M on both sides leads again to Eq.(3.4). Finally, once the β -function for the renormalized
parameter ρΛ has been correctly identified, the β -function for the VED, ρvac(M), immediately
follows from Eq. (3.6):

βρvac =M
∂ρvac(M)

∂M
=

(
ξ − 1

6

)
3H2

8π2

(
M2−m2)+(

ξ − 1
6

)2 9
(
Ḣ2−2HḦ−6H2Ḣ

)
8π2 . (3.9)

This result is significant, it says that the running associated to the renormalization group equation
(RGE) for ρvac(M) is completely free from the troublesome quartic mass terms ∼ m4 and rests
only on the presence of quadratic mass scales in the final result, which are highly smoothed by the
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accompanying factor of the Hubble rate, namely we are left with just soft terms of the form∼m2H2

plus, of course, the higher order contributions O(H4) which are all carrying time derivatives, i.e.
they are of the form ∼ Ḣ2,HḦ,H2Ḣ. All these higher order contributions are irrelevant for the
current universe. The important result (3.9) for the β -function of the VED was first derived in
the recent paper [20]. It shows that a perfectly sensible RGE for the VED (and hence for the
physical cosmological term) exists, in contrast to existing claims in the literature. The upshot is
that the physical cosmological term in Einstein equations is not a rigid cosmological constant in
the presence of quantized matter fields, but a running quantity with the cosmic expansion.

4. The RVM: vacuum evolution from QFT in curved spacetime

Let us now show that the QFT-driven universe remains close to the ΛCDM paradigm, although
it being fundamentally different in conceptual terms. We start from the general form of the renor-
malized VED, Eq, (3.6). For simplicity, we focus on the current universe, so we neglect the ∼ H4

terms in that expression. We explore the VED evolution between epochs characterized by the val-
ues H and H0 of the Hubble rate (in particular, H0 could be the current epoch). Thus, from Eq, (3.6)
we find

ρvac(M,H)−ρvac(M0,H0) =
3
(
ξ − 1

6

)
16π2

[
H2

(
M2−m2 +m2 ln

m2

M2

)
−H2

0

(
M2

0 −m2 +m2 ln
m2

M2
0

)]
+ · · ·

(4.1)

where the . . . stand for the neglected higher order terms. Notice that we have used the important
Eq. (3.8), which insures the cancellation of the quartic mass terms ∼ m4. What about the scale
M? As a matter of fact, M = M(t) becomes a dynamical variable in FLRW spacetime since we
must choose M and M0 at particular epochs of the cosmological evolution in order to evaluate the
physical difference of VED values in these epochs. Thus, denoting respectively by ρvac(H) and
ρvac(H0) the values of ρvac(M = H,H) and ρvac(M0 = H0,H0) and recalling that the higher order
powers are negligible for the late universe, the final result may be cast as follows [20]:

ρvac(H)' ρ
0
vac +

3νeff(H)

8π
(H2−H2

0 )m2
Pl = ρ

0
vac +

3νeff(H)

κ2 (H2−H2
0 ) , (4.2)

with νeff(H) a very slow evolving function of H which can be approximated by the constant value

νeff ≡ νeff(H0)'
1

2π

(
ξ − 1

6

)
m2

m2
Pl

ln
m2

H2
0
. (4.3)

Formula (4.2) with constant νeff constitutes the canonical form of the RVM [14], but here it has
been derived from our QFT framework. As noted, ρ0

vac ≡ ρvac(H0,H0) in it can be identified with
today’s VED value and ρvac(H) ≡ ρvac(H,H) is the VED value at some expansion history time
H(t) around the current time. We naturally expect |νeff| � 1 owing to the ratio M2

X/m2
Pl� 1. Thus,

the RVM formula (4.2) predicts a smooth evolution of the VED between different expansion history
epochs without the disturbance of ∼ m4 contributions, which have been washed out.
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5. RVM: a possible cure for the σ8 and H0 tensions

The RVM has been tested since long in a variety of papers, where the basic parameter νeff

has been fitted to the overall cosmological data [36–42]. Despite of the fact that |νeff| � 1 can
be connected to QFT quantum effects (this fact being crucial for a solid theoretical underpinning
of the RVM), such parameter can only be picked out from observations since we ignore at this
point the details of the underlying Grand Unified Theory (GUT) which ultimately accounts for
such a vacuum dynamics. To test the RVM, we are going to use a generalized expression which
goes beyond the canonical form (4.2). It includes both a term in H2 and in Ḣ, each one with an
independent coefficient, which we call ν and ν̃ :

ρvac(H) =
3

κ2

(
c0 +νH2 + ν̃Ḣ

)
+O(H4) . (5.1)

The higher powers of H are of course irrelevant around our time, so we neglect them from now
on. With the choice ν̃ = ν/2, the VED reads ρvac(H) = 3

κ2

(
c0 +

ν

12 R
)

since R = 12H2 + 6Ḣ is
the curvature scalar. For this reason we may call this particular implementation of the VED the
‘RRVM’. This scenario was analyzed in [43] and will be summarized here. It is particularly well-
behaved in the radiation dominated era, as in it R' 0 and hence the BBN physics is not altered [36].
The following RRVM situations will be considered: 1) type-I, which assumes interaction of vacuum
with matter, and 2) type-II, which assumes matter conservation and a slowly evolving gravitational
coupling G(H). In case 1), the vacuum exchanges energy only with cold dark matter (CDM), but
not with baryons:

ρ̇dm +3Hρdm =−ρ̇vac . (5.2)

On solving explicitly the model leads to the following evolution of the matter densities [43]:

ρm(a) = ρ
0
ma−3ξ , ρdm(a) = ρ

0
ma−3ξ −ρ

0
b a−3 , (5.3)

in wich ξ ≡ 1−ν

1− 3
4 ν
' 1−ν/4+O

(
ν2

)
. Here ρm = ρdm +ρb is the total matter density (CDM plus

baryons). The ΛCDM behavior is obtained for ν = 0 (ξ = 1 ). The presence of ν 6= 0 permits a
soft dynamical evolution of the VED:

ρvac(a) = ρ
0
vac +

(
1
ξ
−1

)
ρ

0
m

(
a−3ξ −1

)
' ρ

0
vac +

1
4

ν ρ
0
m

(
a−3ξ −1

)
+O

(
ν

2) . (5.4)

Once more, for ν = 0 we have ρvac = ρ0
vac, i.e. the ΛCDM . In the case of type-I models we test the

possibility that the vacuum dynamics might have started only very recently (as also contemplated
e.g. in [44]). Thus, we introduce a threshold redshift z∗ and assume that for z ≤ z∗ the vacuum is
dynamical in the way indicated above, whereas for z > z∗ we assume it is constant. Specifically,
we take the threshold point of this dynamical vacuum transition at z∗ ' 1, as in [43]. It turns out
that the possibility of such a transition can actually be a fundamental consequence of the vacuum
behavior in QFT, see [20]. For type II models, case 2), matter is conserved and in this case the
vacuum can still evolve at the expense of a very mild (logarithmic) running of the gravitational
coupling: Geff = Geff(lnH). For this second type of model we do not assume any threshold effect.
The approximate behavior of the VED for type-II RRVM models at around the present time reads

ρvac(a) =
3c0

κ2 (1+4ν)+νρ
0
ma−3 +O(ν2) . (5.5)
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Figure 1. Left: Regions at 1σ and 2σ c.l. in the (σ8-H0)-plane corresponding to type I RRVM. In
the presence of a threshold redshift z∗ ' 1 it reveals efficient for alleviating the σ8 tension, but not
the H0 one; Right: As previously, but for the type-II RRVM. The latter, in contrast, is effective to
mitigate the H0 tension and improves also the σ8 one. H0 in the plots is expressed in km/s/Mpc.

For ν = 0 the VED is constant and ρvac = 3c0/κ2 (i.e. we recover again the ΛCDM behavior), but
for nonvanishing ν it has a moderate dynamics as for type-I models.

In a summarized way the main results of the phenomenological analysis of the two RRVM
types can be seen in Fig. 1, including the ΛCDM [43]. We emphasize that the effect of the
threshold z∗ ' 1 is significant to help lessening the value of σ8 and hence to improve the status of
this tension. Without threshold, however, the effect is only moderate. Unfortunately, type-I models
with fixed Geff = GN do not alleviate the H0 tension, as H0 stays around the CMB value [43]. On
the other hand, type-II models may alleviate the two tensions at a time, which is remarkable (cf.
Fig. 1 right). A more detailed analysis will be considered elsewhere.

6. Conclusions

In this work, we have reviewed in a very summarized way the recent investigations on the prob-
lem of the cosmological vacuum energy in a QFT context [19, 20]. For an extended presentation,
see [16]. These studies confirm that the running vacuum model (RVM) proposal can be formally
derived within QFT in curved spacetime. The intrinsic dependency that renormalized quantities
have on the renormalization point M makes the VED a function of M, and this turns into a cosmic
evolution with H. What we call the ‘cosmological constant’ Λ is only the nearly sustained value
of ρvac(H) around any given cosmic epoch. There is no cosmological constant problem (CCP) in
this approach since, as we have shown, the evolution of ρvac(H) is perfectly smooth, it does not
depend on the quartic powers of the masses ∼ m4. The dark energy that we observe is just the
(non-constant) vacuum energy which, according to QFT in FLRW spacetime, remains naturally of
order H2 at any (post-inflationary) observational time without fine tuning. In point of fact, there
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cannot be any cosmological constant in the context of QFT in curved spacetime since renormal-
ization theory enforces that the vacuum energy density, ρvac(H), must always be evolving with
the expansion. Such evolution is very soft and proportional to H2 through a small coefficient νeff

which is calculable in QFT and plays the role of β -function coefficient of the running. At any
cosmic time t characterized by H(t) there is a (different) ‘CC’ term Λ(H) = 8πGNρvac(H) acting
(approximately) as a cosmological constant for a long period around that time, but there is no true
CC valid at all times!

We have illustrated these facts by considering the renormalization of the energy-momentum
tensor (EMT) of a real quantum scalar field non-minimally coupled to classical gravity in the
cosmological context. The method is based on an off-shell extension of the adiabatic regularization
and renormalization procedure [19, 20] and where for the first time we provided a calculation of
the zero point energy (ZPE) of a quantum scalar field that is free from the need of extreme fine
tuning. The calculational procedure in our approach is based on the WKB expansion of the field
modes in the FLRW spacetime and the use of an appropriately renormalized EMT. The resulting
EMT becomes finite because we subtract the first four adiabatic orders (the only ones that can be
divergent). Since the off-shell renormalized EMT is a function of the arbitrary renormalization
point M, we can compare the renormalized result at different epochs of the cosmic history by
setting M to the value o the expansion rate H at each epoch. This is how we find that the evolution
of the VED throughout the cosmic history is tiny (but nonvanishing) as indicated above.

These properties are confirmed by recent phenomenological analyses based on a large set of
updated cosmological data on SnIa+H(z)+BAO+LSS+CMB [43,45]. One finds that a slow dynam-
ics of the cosmic vacuum is helpful to describe the cosmological observations, and in particular to
reduce the persisting σ8 and H0 tensions that are afflicting since long the standard ΛCDM. Needles
to say, more work will be required to confirm the phenomenological status of the RVM proposal,
but in the meantime the theoretical and phenomenological advantages of this approach are made
evident.
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