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Type IIB moduli stabilisation, inflation and waterfall fields Ignatios Antoniadis

1. Introduction

At present, String Theory formulated in ten or eleven dimensions appears to be the only
promising candidate for a consistent quantum theory of the four known fundamental forces and
their interactions. Compactification of the higher dimensional theory to four spacetime dimensions
entails an immense number of string vacua dubbed as the string landscape. Numerous Effective
Quantum Field Theories, on the other hand, have been built to describe the low energy physics

and make cosmological predictions. Amongst the most important features such a theory should
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dark energy suggested by cosmological observations. The simplest way to realise the dark energy

possess, is a positive tiny cosmological constant A = 10~ in order to account for the
scenario is to introduce a scalar field ¢ with a potential V(¢), which displays a minimum value equal
to the cosmological constant Vinin(¢o) = A, at some suitable point ¢g. There is a significant ongoing
debate, however, on whether the string landscape contains any de Sitter vacua which comply with the
prediction of positive A. Recent Swampland conjectures [1], in particular, suggest that the first and
second derivatives of V(¢) must satisfy the inequalities |[VV|/V > ¢ ormin(V;V;V) < —¢’ (in Planck
units) where c, ¢’ are positive constants of order one. If these inequalities are true, some apparently
consistent (anomaly free) theories in four dimensions do not have an ultra-violet completion and
cannot be derived from string theory. In other words, they belong to the Swampland !. Putting
it differently, starting from a successful Effective Field Theory weakly coupled to gravity which
describes adequately the known physics phenomena, we cannot always embed it in the string theory
landscape.

The above considerations have far reaching consequences both in cosmology and particle
physics [5]. Here, we mention a few implications on otherwise very successful cosmological
scenarios. For example, it is rather obvious that the Swampland criteria summarised in the afore-
mentioned inequalities contradict the assumption that the cosmological constant can account for
the dark energy of the universe. Furthermore, slow roll inflation is inconsistent with these criteria.
Instead, there are suggestions [5] that quintessence models where the cosmological constant varies
over time satisfy current observational constraints. If this scenario prevails, the present acceleration
phase eventually will terminate whereas the expansion of the universe will come to an end in the
distant future.

The ensuing years since their formulation, Swampland conjectures have faced increased
scrutiny. Most of the criticism focused on the assumed heuristic arguments, and the neglected
role of string quantum corrections. Indeed, the latter are anticipated to be essential for the final
form of the effective scalar potential in the resulting field theory model after compactification. This
presentation will focus on investigations of de Sitter vacua and the realisation of inflation in type
IIB superstring theory. These investigations will take place assuming a geometric configuration
of intersecting D-brane stacks with magnetic fluxes [6]. At the same time, we will consider the
effects of a new four-dimensional Einstein-Hilbert term (localised in the internal space) which is
generated from higher derivative terms in the ten-dimensional string effective action [7, 8]. This set
up induces logarithmic corrections to the scalar potential via loop effects [9]. Minimisation of the
whole scalar potential of the theory fixes the internal volume Kéhler modulus, V, whereas the ratios
of the worldvolumes along the three D7-brane stacks are fixed by virtue of D-term contributions

IFor reviews and further references see [2—4]
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and their parameters depending on the quantised magnetic fluxes. In addition, slow-roll inflation
can be realised considering the (canonically normalised) inflaton field to be proportional to the
logarithm of the internal volume V. Furthermore, the open string spectrum associated with the
D7 brane stacks plays a significant role. One can fix magnetic fluxes and brane separations so that
charged open string states have positive squared-masses, except for one of them which becomes
tachyonic when V becomes less than some critical value. It turns out that this state can be identified
with a waterfall field which can be used to stop the inflationary phase and deepen the vacuum. A
generalisation of this scenario with several waterfall fields shows that the model can accommodate
the present dark energy.

2. Type IIB moduli stabilisation

We briefly introduce the basic geometric set up and the moduli field content. We consider a
six-dimensional compactification on a Calabi-Yau (CY) threefold within a type IIB framework in the
presence of quantised 3-form fluxes. Deformations of the compactification correspond to massless
scalars which do not acquire tree-level potential and do not affect the four-dimensional action. Such
scalars are the dilaton field @, the Kéhler moduli 7;, the complex structure (CS) ones z,, moduli
corresponding to brane deformations and so on. We further introduce a two index antisymmetric
tensor denoted with B,,,, (the Kalb-Ramond field) and the p-form potentials C,,, p = 0,2,4. The Cy

potential and the dilaton field, define the usual axion-dilaton combination S = Cy+i e ®

- Cy+ +
where g; is the string coupling. At the effective theory level, there are two basic ingredients: t(lgl;
superpotential of the moduli fields and the Kéhler potential.

To construct the superpotential one introduces p-form field strengths F,, = d C,_1, H3 = d B>
and defines G3 = F3 — S H3. In terms of these, the fluxed induced superpotential W} is given, at

the classical level, by the well-known formula [10]:

Wo = / G3 A Qz0), (1)

where Q(z,) is a holomorphic 3-form. It turns out that the perturbative superpotential ‘W is
a holomorphic function which depends on the axion-dilaton modulus S, and the CS moduli z,.
Imposing the supersymmetric conditions, the moduli z,, S can be stabilised. On the contrary, the
Kéhler moduli, do not participate in the perturbative superpotential and thus remain completely
undetermined at this stage.

The second ingredient is the Kéhler potential which depends logarithmically on the various
moduli fields through the expression:

Ko =-2In(V) - ln(—i/Q AQ), ()

where YV is the volume of the 6d internal CY manifold Xg, in string units. The effective potential
is computed from (2) using the standard supergravity formula

Ve = eX (Z Z)I(W(ﬂ(U_Z)j(Wo - 3|WO|2), 3
1,J
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where D; = d; + K is the Kdhler covariant derivative. At the classical level this potential vanishes
identically due to its no-scale structure, and appropriate supersymmetric (flatness) conditions for
the dilaton and the CS moduli. It is thus impossible to stabilise the Kéhler moduli at this level.
These moduli can be stabilised when quantum corrections breaking the no-scale structure of the
Kaéhler potential are included.

Several ways to fix this problem have appeared over the last two decades. A first approach [11,
12] was based on the inclusion of non-perturbative superpotential terms of the form W,, ~
> A;e=%7i The coefficients A; may depend on the complex structure moduli, and the exponential
factors on the Kéhler ones 7;. The parameters @; may arise form gaugino condensation on D-brane
stacks and for the SU(N) case, they are of the form zﬁ”). The above ingredients can stabilise the
Kihler fields, however the potential acquires an anti-de Sitter (AdS) vacuum [11]. A possible
solution to this problem [12] is to uplift the vacuum by taking into account contributions from D3
branes. There are two issues regarding this solution. Firstly, in order to obtain an AdS minimum
the coefficients ‘W), A; and g; require unnatural fine-tuning. Secondly, these contributions rely on
non-perturbative effects which cannot be controlled at the full string level. Some improvements of
the original models, however, have appeared using nilpotent chiral multiplets [13], which lead to a
new mechanism for uplifting the vacua in the string landscape [14].

A different way to stabilise the moduli is based on Large Volume Scenario (LVS)[15]. This
proposal takes advantage of the leading @’ corrections to the Kéhler potential (together with the
non-perturbative contributions) which ensure an AdS solution in the Large Volume Limit but avoid
tuning W) in (1) at extremely small values. Uplift to a de Sitter (dS) vacuum can be realised through
D-terms.

Perturbative moduli-dependent corrections in weakly coupled string theory, on the other hand,
are fully controllable and therefore more reliable. However, not all types of corrections are suitable
for moduli stabilisation. Ordinary perturbative expansions, either in @’ or in powers of the weak
string coupling g5, fail to generating a (meta)stable dS minimum in a controllable way. This is the
well-known Dine-Seiberg problem which we now describe in brief. When perturbative moduli-
dependent quantum corrections are included in the Kihler potential they induce contributions to the
scalar potential, V(1;) where 7; are the imaginary parts of the Kéhler moduli 7; and are associated
with the internal volume. The validity of perturbation theory implies that such corrections should
vanish for 7; — oo implying also the vanishing of the scalar potential V(1;);_ . — 0. If the zero
at infinity is reached from negative values, then, for non-contrived scalar potentials V(t;), this
implies an AdS minimum which is not acceptable. Thus, the vanishing of the potential at infinity
should be approached from positive values. Again, for reasonable V(7;), this implies that there
should be somewhere a maximum before a dS minimum is formed. These three shapes are plotted
in figure 1. The potential on the right-hand side exhibits local minimum and maximum and its
shape suggests that there should be two competing terms of different functional dependence on 7.
While previously considered perturbative corrections do not share this property at large volumes,
a possible exception known from field theory are logarithmic corrections similar to those in the
Coleman-Weinberg mechanism [16].

The above observation shows the way to overcome the difficulties in superstring constructions.
We recall that string theory has a reach structure including non-perturbative objects such as D-
branes which open up possibilities to construct realistic cosmological models. Another ingredient, of
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Figure 1: Left figure: Vanishing of V() from 0~ happens for potentials with an AdS minimum. Middle:

Large 7 behaviour of V(r) with power law correction ~ —. The potential on the right-hand side exhibits

Tn:
local minimum and maximum.

particular interest in the present study, comes from high order curvature terms in the ten dimensional
effective action. These elements are sufficient to generate loop corrections which induce new
contributions to the Kéhler potential K, break its no scale invariance and stabilise the moduli.
We will describe in short how perturbative logarithmic corrections are generated with the above
constituents.

The low-energy expansion of the type IIB superstring action contains fourth order terms
in the Riemann curvature, R*, which do not receive any perturbative corrections beyond one
loop [7, 17, 18]. Upon compactification to our four dimensional spacetime My, these one-loop
corrections induce a novel Einstein-Hilbert (EH) term R4). Its coefficient is proportional to the
Euler characteristic y, defined on Xg by

X = 3 RARAR-
473
Xe
Observing that y contains three powers of R, we deduce that the effective EH term R4) (originating
from R*) is only possible in four dimensions. Furthermore, such an EH term can be viewed
as a vertex localised at certain points in the six-dimensional bulk where y acquires non-zero
values, emitting closed strings (gravitons). We thus study the case of three-graviton scattering
involving two massless gravitons and a Kaluza-Klein (KK) excitation propagating towards a D7-
brane stack. The sum over the KK modes corresponds to a propagation that takes place in a
two-dimensional bulk space transverse to the D7 stack, see Figure 2. Consequently, this process
yields logarithmic contributions breaking the no-scale invariance of the Kéhler potential [6, 9].
Taking these logarithmic contributions into account the final effective action (obtained in the
T /Zy orbifold limit) contains [9]

1 20 4¢12) x
2 2ap / ¢ Rao + (2n>3/

M4><X6 My

Rk
1= > Tilog == | R, (4)
k=1,2,3 W

Here, T} is the brane tension of the k-th stack, Rﬁ the size of the two-dimensional space transverse
to the D7-stack and w an ‘effective’ localisation width of the graviton vertex, given by w = ¢,/ VN
with I, = V' the fundamental string length [8].

From the correction terms (4) in the 4d reduced action we can readily extract the corresponding
induced terms in the Kihler potential. For simplicity we assume the same tension for all three



Type IIB moduli stabilisation, inflation and waterfall fields Ignatios Antoniadis

brane stacks, so that T, = T = ¢~ ®T}, and for each Kihler modulus 75 we denote 7 = Im7%. For
D77-brane stacks with orthogonal co-volumes, the internal volume is simply V = /717273, and the
the Kéhler potential takes the form

K==2In(Vanm+&+yhn(ninn) = 2In(V+E+yhnYV). 5)
Computations for the orbifold and smooth CY cases show that the parameters & and y are given
by [8, 9]
% ”?2 g2 for orbifolds

1 .
Y= —EgsTof, with & = IR , (6)
/(3) for smooth CY

In (6) tree-level contributions for the orbifold case have not been included, since the £(3) y correction
to the EH term vanishes [7, 8]. The identity £(2) = %2 has also been used in the orbifold action (4).

/7\

koo

ky o

worldsheet y=0

V=3

Figure 2: Non-zero contribution from 1-loop; 3-graviton scattering amplitude of 2 massless gravitons and 1 KK mode
corresponding to a closed string propagation in 2-dimensions towards a D7 brane.

3. Inflationary phase

From (3) we can readily compute the F-part of the scalar potential V. To this end, we assume
that all complex structure moduli are stabilised and the fluxed induced superpotential ‘W) can be

£
taken as a constant, while for convenience we introduce the new parameter u = ¢?. The exact
expression for Vg can thus be written as

_3ywy 2(y +2V) + (4y — V) In(uV)
(V4 2y In(uV))? (6y2 + V2 + 8y + y(dy — V) In(uV))

(N

Vi

where k = V87 Gy is the reduced Planck length. In the large volume limit, Vi takes the simplified

form
W
Vi = 73 (E+2y(InV —-4) +--- (8)

By virtue of the logarithmic term the potential (8) acquires a global minimum, although this is an

anti-de Sitter vacuum. Yet, a D-part contribution to the scalar potential comes from the existence
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of universal U(1) factors associated with the three D7-brane stacks. In the large world-volume limit
this contribution takes the form

d d d
Vp = Ly =2 4 2 4 ©)

4.3 4.3 4.3
KT) KTy KT

where the d; for i = 1,2,3 are model-dependent constants related to U(1) Fayet-Iliopoulos (FI)
terms.

For the subsequent discussion it is useful to replace the dependence of the potential on Kihler
moduli with the canonically normalised fields. We identify them with a logarithmic function of
the volume and two perpendicular directions defined in terms of 7; ratios. We also recall that we
consider a simple setup with “orthogonal” D7-brane stacks, such that V = +/t;7273. The new basis

¢ = \/gln V), (10)
1 1

then reads:

.
=_1 2 11
u 20g(Tz), (11)
3
v:£log (32) : (12)
6 T3 T3

In terms of these, the total scalar potential Vg = Vg + Vp in the large volume limit is

2
Va b (v(Vog 4 +¢)

2k4
e“/g"j

4

+ (dle-*@H“ + dye PV dgemV) . (13)

K

In the inflationary scenario that we will discuss shortly, the field ¢ defined in eq. (10) will play
the role of the inflaton. In order to examine its evolution during the inflation era, we need first to

2
stabilise the three moduli u, v, V = e‘/;ZS and derive the constraints in order to ensure a dS vacuum.
We first minimise Vg with respect to the two transverse fields u, v, and find their values at the

1 d] 1 dld2
up=-In|—|, vo=—mhn|—=]. 14
"6 (dZ) T 6V3 ( d3 ) (1

Substituting back into (13) we obtain the simple expression
C 33 3 3 3
V(g) ~——e 3‘/;5 (\/;¢ —-4+q+ 50’6’\/;75) , (15)
K

where we have defined

minimum:

¢ 2d

C=-3Wyly >0, d=3(didods)’, g= =, o .
0 14243 q 2)’ 9(W027/

16)

A few comments are in order. First, in order to ensure a dS vacuum, the parameter y must be
negative, hence the coefficient C is positive. Moreover, the parameter d, related to the D-term part
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of the potential, is always positive. Furthermore, increasing of the value of the parameter ¢ shifts
the local extrema towards larger volumes. Finally, o is the only free parameter of the model. It
acquires negative values, hence the total coefficient of the last term is positive and is expected to
uplift the minimum of the potential to positive values.

To study inflation and compute the slow-roll parameters we need to determine the extrema of
the potential with respect to the inflaton field ¢ [19]. Thus we take the first and second derivatives
of the potential with respect to ¢ and obtain

V'(¢) = :4>\/§%€_3\g(ZS (\/;’ +q- ? + 0€‘g¢), (17)
V" (p) = 27 C _3[¢ (\/7¢ +q-— + O'e‘[‘/’) (18)

Requiring the vanishing of the first derivative, V’(¢) = 0, we obtain two solutions which are
expressed in terms of the two branches Wy and W_; of the Lambert W function (product logarithm):

¢- = —\/g (6] - ? +Wo (—e_x_l)) , (19)
¢y = —\E (q = ? W (—e‘“)) . (20)

The new parameter x introduced in the above solutions is defined by

16
X=q- 5 - log(-0) & o= —edE Y, (21)

while ¢_ is the local minimum and ¢ the local maximum. Large volumes can be achieved at weak
coupling for g < 0, implying a negative Euler number y < 0, see egs. (6) and (16).

Notably, most of the important quantities are expressed through simple analytical forms in
terms of x. For example, the slow-roll parameter n depends only on x through the Lambert W

function:

V' (pys) 1+ Woy—i(=e™")
_jy) = =-9 . 22
n(¢-/+) Vo) TR p— (22)

Similarly, the distance between the two extrema is

by — b = \/g [WO (—e‘H) W, (—e—x-l)] >0. (23)

The parameter x thus clearly plays a significant role. For the critical value x. ~ 0.072132

the potential at the minimum vanishes, V(¢-) = 0, which corresponds to a Minkowski minimum.
Below this critical value, in the region 0 < x < x., the potential acquires a dS vacuum whereas for
x > x. it displays an AdS minimum. For x < 0 the two branches of the Lambert function join and
the potential loses its local extrema. The potential for the three regimes described above is depicted
in Figure 3.

Having determined the region of the parameter x which is consistent with dS minima, we
are now ready to study cosmological implications and in particular inflationary observables. We
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— V() x=10 — V() x=0072132 | —V(9) x=10 x 104 |

—40 L - oL

Figure 3: Scalar potential V(¢) for different values of x giving an AdS, Minkowski or dS vacuum.

first find that some well-known inflationary scenarios such as slow-roll inflation hilltop, cannot be
realised in our restricted model. We can easily adjust the value of the slow-roll parameter 7 (which
depends only on x) by varying x € (0, x.), so that inflation starts near the maximum, and the modes
exit horizon with the required value of the spectral index. It is found, however, that the slow-roll
parameters €, 7 remain much less that unity all the way down the slope, hence inflation does not
stop, and as a result an unacceptably large number of e-folds is generated.

As we describe below, in order to study more general inflationary scenarios, we will scan the x
parameter space. For each value of x, we can solve the evolution equation for the Hubble parameter
and derive the relevant parameters to study the eventual inflationary stage. Before entering the
details of such a procedure, we thus recall a few basic equations regarding the evolution of the
expansion of the Universe and the inflationary epoch assuming a single scalar field ¢ in the standard
Friedmann-Lemaitre-Robertson-Walker (FLRW) background. The Friedmann equations for an
expanding Universe are

1,
3H? = §¢>2 + K2V(9), (24)
2H = —¢?, (25)
where, as usual H(t) = % represents the Hubble parameter. The equation of motion for the scalar

field reads
$+3H+ >V (¢)=0. (26)

Changing variable H = Z—ggﬁ, equation (25) yields

dH 1.
— =H'(¢)=-=6¢. 27
6 (¢) ¢ (27
Using (24) and expressing ¢ as a function of H and V, we obtain the Hubble parameter evolution
equation:
H'(9) = F—=\BH2(¢) - <2V(8) . (28)
V2
The exact forms of the slow-roll parameters 7, € are [20]
H" () H _(H@®)
77(¢) =2 ’ 6(¢) =-— =12 ( > (29)
H(¢) H? H(¢)
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” , 2
while in the slow-roll limit they acquire the usual forms 7(¢) ~ ‘(,(—%) and €(¢) = % (%) . From

the first expression of € in (29), we obtain

P
— =1-¢ 30
I (30)
so that € < 1 is the natural criterium characterising inflation, a phase with é > 0. Finally, the
number of e-folds N is given by

tend 1 ¢ d¢
N=/ Hdt = —/ i 31)
t ‘\/z Pend ‘\/E

As mentioned above, one can investigate inflationary possibilities through a scan of the x
parameter in the following way. The value of x determines the shape of the inflaton scalar potential
V(¢), which enters the evolution equation (28) for the Hubble parameter. For a given value of
x, solving this equation thus allows to compute the slow-roll parameters and number of e-folds,
through eqs. (29) and (31), and study the inflationary phase.

The above scan gave rise to a novel scenario where most of the e-folds are obtained near the
minimum. In this scenario, the inflaton starts rolling down from a point close to the maximum
towards the minimum of its potential with zero initial speed. If n(¢;) < —0.02, because at the
inflection point the second derivative V"' (¢) changes sign, the inflaton will pass through the point
where n(¢.) = —0.02 before it crosses the inflection point. We can then choose the parameter
x so that 60 e-folds are obtained from this point to minimum. Thus, in order to reproduce the
observational data, the initial position of the inflaton has to be higher than the inflection point,
where 77 is negative, so that = —0.02 is taken at the horizon exit.

In order to realise this scenario, we have solved numerically the evolution equation (28) for
various values of x, starting near the maximum with vanishing initial speed for the inflaton. The
required number of e-folds, N, =~ 60 are achieved for x ~ 3.3 10~* while the two extrema of the
potential are found at ¢_ = 4.334 and ¢, = 4.376. The e-folds are computed from the horizon
exit ¢, =~ 4.354 at which n(¢.) = —0.02, down to the minimum ¢_. Is it worth observing that the
corresponding inflaton field displacement A¢ ~ 0.02, is much less than one in Planck units. Hence
it corresponds to small field inflation, and as such is compatible with the validity of the effective
field theory. Finally, this model predicts an inflation scale H, ~ 5 x 10'> GeV and a ratio of tensor
to scalar perturbations r ~ 4 x 1074,

4. Waterfall fields and hybrid inflation

Up to this point, we have explained how in the simple geometric set up of three D7-brane
stacks we can ensure Kéhler moduli stabilisation in a dS vacuum and investigated the conditions to
realise inflation. We found that logarithmic radiative corrections and brane magnetisations generate
a scalar potential with a very shallow dS minimum, which can realise inflation with the required
60 e-folds collected near the minimum (as opposed -for example- to the case of hilltop scenario).
However, the tight constraints imposed by the various requirements entail a metastable minimum
with a cosmological constant much larger than the one observed today. A detailed consideration
shows that this false vacuum of the so-obtained scalar potential is suggestive for a solution through

10
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hybrid inflation [21] where a waterfall field ends the inflation phase and settles to a lower (true)
vacuum with the anticipated value of the cosmological constant. Such a waterfall field is realised
by a scalar field with effective mass depending on the value of the inflaton. If this field becomes
tachyonic under a certain critical value for the inflaton, it generates the waterfall direction of the
scalar potential.

Within the present geometric configuration, potential waterfall field candidates are the various
states associated with the excitations of open strings with endpoints attached to D7 brane stacks.
The scalar components of these states may receive supersymmetric positive square masses from
brane separation or Wilson lines, and non-supersymmetric contributions due to the presence of the
worldvolume magnetic fields generating the D-terms required for moduli stabilisation.

In the following, we briefly describe how these fields contribute to the materialisation of this
scenario in the context of a Z, X Z; orbifold. We assume a factorised 6-torus into three 2-tori
T® = T? x T? x T? spanning the internal dimensions (45), (67) and (89) respectively. The model
under consideration consists of three D7 brane stacks, which we denote with D7{,D7, and D73.
Each of them spans four internal dimensions and is localised in the remaining two. This setup can
be considered as dual to the configuration of the D9 and D5 branes as in the toroidal orbifold model
described in the literature [22, 23]. This is shown schematically in the following table where we
impose T-duality along (45) dimensions.

\ 45) (67) (89) \ 45) (67) (89)
D7, . X X D9, X X X
—
D7, X X . D5, . X
D7, X . X D55 . . X

We use a cross X to represent the D7 world-volume spanning the corresponding torus, and a dot -
to indicate the transverse directions where the D7 brane is localised.

As motivated above, we can introduce magnetic fields Hg), on the a-th stack D7, and in the
i-th torus Tl.z. They are subject to the Dirac quantization condition m." f HY = 27nY), leading to

the magnetic field quantisation 27HY A; = k'Y, where 472 A; is the Tl.2 area. Here m\’, n! are the

winding numbers and the flux quanta and we defined the ratio k) = n%/m'Y € Q. The magnetic
fields modify the world-sheet action by introducing boundary terms [24, 25] and shift the modes of

the charged oscillators by

. 1 ’ i
0 = ;Arctan(Zna qaHY). (32)

where g, = +1,0 are the U(1) charges of the open string endpoints.

The mass spectrum can be extracted, either from the field theory mass formula or from vacuum
amplitudes, and one sees that when magnetic fields are introduced into the D7-brane configuration,
tachyonic states may appear in the spectrum [25, 26]. In general, one can eliminate them by
introducing appropriate brane separations or Wilson lines.

To be concrete, we consider magnetic fields on each D7 stack, denoted by a circled cross ® as
the following table.

11
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| @5 (67 (89)
D7, . ® X
D7, X : ®
D75 ® X

Three different kinds of states appear. The first two describe strings with both endpoints on the
“same” stack D7;-D7; which are either neutral (attached to the same brane, hence with opposite
endpoints charges) or doubly charged (stretching between the brane and its orientifold image). The
last ones are mixed states D7;-D7;, withi # j. Due to the presence of magnetic fields, the massless
states of the original orbifold model are modified. The masses of the D7;-D7; doubly charged
states read a’m? = —2|§l.(j)|2 whereas those of the D7,-D7; states are of the form (|{2(3) | — |§1(2)|),
1671 =16"D and (12371 - 1557D.

Observing the above mass formulae, it can be deduced that tachyonic states indeed appear in
the spectrum [25, 26]. The only way to eliminate all three potential tachyons along the D7-brane
intersections (D7;—D7; mixed states) is to choose | 1(2)| = |§£3 | = |§§” |. On the other hand, in order to
uplift the tachyons on the D7;—D7; sectors, we can introduce distance separations between branes
and their images in the direction orthogonal to their worldvolume, or Wilson lines i.e. constant
background gauge fields on unmagnetised worldvolume tori. In the Table below we present a
configuration keeping only one potential tachyonic state that can play the role of the waterfall field:?

| @5 (67) (89) | @5 (67) (89
D7, . ® X D7, . ® XA,
—>
D7, X . ® D7, X Caxy ®
D73 ® X . D73 ® XAs

We introduce discrete Wilson lines along the third torus T32 for the D7, stack and along the second
torus T22 for the D73 stack, while we separate the D7, stack from its orientifold image in its transverse
directions. Next, we denote the A; tori areas (I = 1,2,3) as power fractions of the total volume
A; = a'riV'3, with rirrs = 1 and U; the corresponding complex structure moduli. Then, the
masses for the doubly charged states in the three brane stacks are found to be [19]

o 2K .
i E TG IE " V3 (33)
21k5"|
o 2 1/3
7 X 71'1”3(‘/1/3 + 2V, (34)
2|k3 a2
‘miy ~ — 51, 4 35)

where a;, a3 and y; are functions of the complex structure moduli U; defined in footnote 2. By
choosing appropriately a;, az with respect to the values of the magnetic fluxes |k(12)| and |k(3”|,
one can eliminate the D7,-D7, and D73-D75 tachyons. For a; = 1/2, typical for Z, orbifolds,

2The following definitions are introduced: the discrete Wilson lines in the dual lattice are expressed as Ay =

arxR* + akszy, with  agy, axy € Q. The D7y brane position xy as xg = x; Ry + x]); Ryy with x7, xz € Q, while
4|x*—iUx? 2 ,+iU ay 2
Rix -R;.‘l = 611(. For later use, we also define yi (U) = % and ai (U) = %
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this requires flux numbers smaller than wrapping numbers. On the other hand, the D7,-D7, state
becomes tachyonic at and below a critical value of the volume that can be chosen to be in the vicinity
of the minimum of the potential, as required for the waterfall field, denoted by ¢_ in the following.

We turn now to the scalar potential. The magnetic fields contribute through a D-term of the
form

Vo= fon, ( anlwalz)

a
2

801, 8ua 2
= 3, e R (G2 2o P ) e (36)
a=1,3

where in the second line contributions only from the tachyonic field and its charge conjugate are
taken into account.

We have also explained that the tachyonic scalar, coming from strings stretching between the
D7, brane stack and its image, may receive a positive mass contribution due to the brane position.
In the effective field theory, this contribution is described by a trilinear superpotential obtained
by an appropriate N = 1 truncation of an N = 4 supersymmetric theory. The physical mass for
the canonically normalised fields can be computed from the physical Yukawa couplings, derived
from the supergravity action, and can be expressed as [27] Wiacn = Yijk wi@;pr, Where Yy are
Yukawa coeflicients expressed in terms of the Kihler metrics of related matter fields. Their volume
dependence can be worked out and the final form of the coupling is

A
Wach = 87k 3\/0,(2;/902%90-, 37)

which induces a scalar potential F-part of the form Vg > m)z(2 (I 1> + -] ) with mx2 = y2(g2/K*V) A o'
In addition to this mass-squared terms, the F-term scalar potential also contains quartic terms. They

can be worked out and the leading term in the scalar potential for the tachyonic scalar is found to
be of the form Vi > «?m? Ll 4.

The effective scalar potentlal includes the D-term and F-term contributions and its final form
is achieved after the minimisation procedure whose details can be found in [19]. Neglecting, in
particular, the massive ¢, field, the scalar potential receives the simplified form

C{IhV-4+q 3o /l((V)

(Vi) = = T o —le-I* (38)

2 Y((V)l(p |2

where the explicit forms of the volume dependent mass m,z, and quartic coupling A are given in terms
of integers representing magnetic fluxes [19] and other string parameters. The final dependence of
V(V, ¢_) on the two fields has been written in the form of the hybrid scenario [21] scalar potential.
In this form it is even clearer that the role of the waterfall field is played by the scalar field ¢_
associated with the state stretching between the D7, brane and its orientifold image. Its mass
squared m% depends on the internal volume V, directly related to the inflaton, and turns negative
when the internal volume acquires a critical value. A waterfall direction is thus generated, as in the
hybrid scenario. This mechanism leads to a new lower minimum. It has been found [19] that when
only a single tachyon is involved, the amount of reduction falls short to explain the observed value

13



Type IIB moduli stabilisation, inflation and waterfall fields Ignatios Antoniadis

of dark energy of our Universe. This situation can be remedied within our model by introducing
more tachyons, coming from the two other D7-brane stacks and from a fourth magnetised stack,
parallel to one of the initial stacks. These additional tachyons contribute negatively to the scalar
potential and are sufficient to achieve the present value of the cosmological constant. Apart from
(or instead of) these contributions, one should of course expect new physics at low energies, leading
to other phase transitions that affect the scalar potential. Hence, the precise tuning of the vacuum
energy within our high energy model should be regarded as a proof of principle.

5. Conclusions

In this presentation we have discussed aspects of perturbative corrections in the weak string
coupling regime and large volume compactifications within the framework of type IIB string theory.
We have considered a geometric configuration of intersecting D7-brane stacks and investigated the
role of logarithmic corrections which are present by virtue of local tadpoles induced by localised
gravity kinetic terms. Such terms are generated from the dimensional reduction of the R* terms in
the effective ten dimensional action and arise only in four spacetime dimensions. We have shown
that in this string theory context, metastable de Sitter vacua can be ensured together with Kéhler
moduli stabilisation.

Subsequently, we have examined the possibility of realising the mechanism of cosmological
inflation. We have shown that the inflationary scenario can be naturally implemented when the
internal volume modulus is considered to be the inflaton field. The effective scalar potential contains
only a single free parameter, whose value is fixed in order to meet the inflationary conditions and in
particular the requirement of 60 e-folds which, in our construction, are collected near the minimum,
while the horizon exit occurs near the infection point. These requirements, however, lead to a very
shallow potential with its minimum much larger than the known value of the cosmological constant.

To resolve this discrepancy, we have suggested that a string version of the hybrid inflationary
scenario could be realised where possible waterfall fields could be identified with some of the
charged string states stretching between the branes and their orientifold images. In the effective
theory, the (volumed dependent) masses squared of such excitations consist of positive contributions
from brane separations and possible negative ones when worldvolume magnetic fields are turned on.
With suitable conditions on various quantities such as magnetic fluxes and geometric characteristics,
tachyonic states may appear. For illustrative purposes, we have presented a simple scenario where
a tachyonic field arises, with its mass squared turning negative as soon as the internal volume
acquires a critical value. This is exactly what is required for a waterfall field. More specifically,
in the effective field theory, states of the kind described above induce specific contributions to the
F- and D-terms of the effective potential. When these contributions are included in the total scalar
potential [19], the tachyonic field can indeed play the role of the waterfall field, providing in this
way an explicit string realisation of the hybrid inflationary scenario. Finally, we have discussed the
role of multiple tachyonic fields in order to obtain the present value of the cosmological constant.
Remarkably, the present construction offers an explicit counter-example to de Sitter Swampland
conjecture.
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