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1. Introduction

The standard model (SM) of elementary particle interactions [1] has been studied at high-
energy colliders extensively [2, 3]. The result of these experimental studies can be summarized sim-
ply: the SM describes final states of particle collisions precisely. Furthermore, extensive searches
for new particles at the Large Hadron Collider have so far provided only exclusion limits, so we
do not have any proven sign of physics beyond the SM (BSM) from colliders [4].1. Nevertheless,
the precision of the SM parameters – in particular, that of the masses of the Higgs particle and the
t quark together with the value of strong coupling [6] – provides strong evidence that the scalar
potential of the SM becomes unbounded from below at energy scales around 1011 GeV [7, 8]. This
means that the vacuum of the SM is metastable, and thus, if new physics exist, it should not worsen
the stability, but possibly push the vacuum to the stability region.

There is a handful of established experimental facts that cannot be explained by the SM. The
most outstanding ones are the following [6]: (i) the measured abundance of dark matter in the
universe; (ii) the non-vanishing neutrino masses; (iii) the observed matter–anti-matter asymmetry
requiring lepto- and baryogenesis2; (iv) the accelerating expansion of the universe, signaling the
existence of dark energy. In addition to (i)–(iv), (v) inflation in the early universe is also considered
fairly established, but without any direct proof for it. All these facts have to be explained by such
an extension of the standard model that respects (a) the high precision confirmation of the standard
model at collider experiments (b) and the lack of finding new particles beyond the Higgs boson by
the collider experiments.

Neutrinos clearly must play a key role in the quest for the BSM theories. Neutrinos with non-
zero masses must feel another force apart from the weak one. As all electrically charged fermions
couple to the Higgs boson, it is at least not unnatural to assume that neutrinos do so as well, which
requires the existence of right-handed neutrinos ν

f
R. We assume that these neutrinos come in three

families ( f = 1, 2 and 3) just like the SM fermions. Such neutrinos must be sterile under the SM
gauge interactions, and might have observable effects only if they couple to the charged fermions
through a new force.

The simplest and most economic extension of the SM gauge group GSM = SU(3)c⊗SU(2)L⊗
U(1)Y is by a new U(1) to G = GSM⊗U(1)z. Of course, such a new gauge interaction is not ob-
served directly among the SM fermions, hence we expect it is broken. We assume the existence of
a new scalar whose vacuum expectation value w breaks the new U(1) and simultaneously stabilizes
the vacuum up to the Planck scale. The existence of the U(1)z group calls for the fixing of the
new z charges. The requirement of gauge and gravity anomaly cancellations and the inclusion of
all possible gauge invariant Yukawa terms involving the right-handed neutrinos and the new scalar
field allows for setting the z charges up to a normalization factor of the new gauge coupling gz.

Such a model has the potential of explaining all the confirmed signs of new physics. Dirac
and Majorana neutrino mass terms are generated by the spontaneous symmetry breaking (SSB) of
the scalar fields, providing the origin of neutrino masses and oscillations. The lightest new particle

1There are notable deviations of experimental results from precision predictions in the flavor sector, but to date none
has reached the significance of discovery [5]

2Baryogenesis can be explained in the standard model provided leptogenesis occurs, which is called lepto-
baryogenesis
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is a natural candidate for weakly or feebly interacting massive particle (WIMP/FIMP) matter if
it is sufficiently stable. Diagonalization of neutrino mass terms leads to the emergence of the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, which in turn may be the source of lepto-
baryogenesis. The second scalar together with the established Brout-Englert-Higgs (BEH) field
may be the source of accelerated expansion now and inflation in the early universe. Of course,
extensive phenomenological studies are required to confront the predictions of the model with
measurements, and decide whether or not these promises are fulfilled.

2. Particle model

We consider the usual three fermion families of the standard model extended with one right-
handed Dirac neutrino in each family, using the notation

ψ
f

q,1 =

(
U f

D f

)
L

ψ
f

q,2 =U f
R ψ

f
q,3 = D f

R ; ψ
f

l,1 =

(
ν f

` f

)
L

ψ
f

l,2 = ν
f

R ψ
f

l,3 = ` f
R

(2.1)

for the chiral quark fields ψq and chiral lepton fields ψl . The subscripts L and R denote the left and
right-handed projections,

ψL/R ≡ ψ∓ =
1
2
(1∓ γ5)ψ ≡ PL/Rψ . (2.2)

The field content in family f ( f = 1, 2 or 3) consists of two quarks, U f , D f , a left-handed active
neutrino ν f , a charged lepton ` f and a right-handed (SM) sterile neutrino ν

f
R. U f is the generic

notation for the u-type quarks while D f is that for d-type quarks.
The Lagrangian is

L = LSM +LSW (2.3)

where LSM is the Lagrangian of the SM and LSW contains the terms due to the superweak (SW)
extension. The U(1) part of the covariant derivative acting on the field ψF is extended by the term
belonging to the new U(1) gauge field B′µ :

D
(F),U(1)
µ =−i(yFgyBµ + zFgzB′µ) , (2.4)

with yF being the usual hypercharges and zF to be specified below. The field strength tensor F ′µν of
B′µ is gauge invariant itself, hence we allow for the presence of the kinetic mixing term

LSW ⊃−
1
4

F ′µνF ′µν −
ε

2
FµνF ′µν (2.5)

with mixing parameter ε .
The scalar sector is extended by a complex scalar χ that can mix with the usual SU(2)L-doublet

Brout-Englert-Higgs (BEH) field φ , so

LSW ⊃
(
D

(F)
µ χ

)∗
D (F)µ

χ−
(
−µχ |χ|2 +λχ |χ|4 +λ |φ |2|χ|2

)
. (2.6)

After SSB we parametrize the fields as

φ =
1√
2

(
−i
√

2σ+

v+h′+ iσφ

)
, χ =

1√
2
(w+ s′+ iσχ) (2.7)
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Table 1: Particle content and charge assignment of the SWSM, where φ and χ are complex scalars and the
others are Weyl fermions. For SU(3)c⊗SU(2)L the representations, while for U(1)Y ⊗U(1)z the charges
(y and z) of the respective fields are given. Note that for U(1)Y , the eigenvalues of the half hypercharge
operator Y are given.

SU(3)c SU(2)L U(1)Y U(1)z

QL 3 2 1/6 1/6
UR 3 1 2/3 7/6
DR 3 1 −1/3 −5/6
LL 1 2 −1/2 −1/2
NR 1 1 0 1/2
eR 1 1 −1 −3/2
φ 1 2 1/2 1
χ 1 1 0 −1

where v and w denotes the VEVs of the fields, whose values are

v =
√

2

√
2λχ µ2

φ
−λ µ2

χ

4λφ λχ −λ 2 , w =
√

2

√
2λφ µ2

χ −λ µ2
φ

4λφ λχ −λ 2 , (2.8)

with µ2
φ

and λφ being the usual coefficients of the quadratic and quartic terms of the BEH potential.
Assuming Yukawa interactions between the fermions and scalars, these VEVs provide masses to
the fermions. In particular, the new Yukawa terms

−LSW ⊃
1
2

νRYN(νR)
c
χ +νRYνεabLLaφb +h.c. , (2.9)

lead to both Dirac and Majorana mass terms for the neutrinos. In Eq. (2.9) LL is the left-handed
lepton doublet, εab is the Levi-Civita symbol, a and b are SU(2) indices, and the superscript c
denotes the charge conjugate of the field, (νR)

c =−iγ2ν∗R. The first term is gauge invariant provided
the z-charge of the right-handed neutrinos and the new scalar satisfy the relation zχ =−2zνR .

It is well known that the requirement of cancellation of gauge and gravity anomalies in U(1)
extensions of the standard model lead to the parametrization of the z-charges in terms of two ratio-
nal numbers Z1 and Z2 [9]. In the SWSM we assume that the left- and right-handed neutrinos have
opposite z-charges, which fixes Z2 with Z1 given. With this choice and a suitable reparametrization
of the U(1) couplings gY and gz, we find that the model is equivalent to a U(1) extension when only
the right-handed fermions are charged under the new U(1) interaction [10]. Had we chosen equal
z-charges for the left- and right-handed neutrinos, we would end up with the well studied U(1)B−L

extension.
The remaining unkown Z1 can be fixed freely, which sets the normalization of the coupling.

For the sake of convenience, we choose the z-charge of the BEH scalar to be unity. The charge
assignments are then obtained as given in Table 1.

3. Masses of neutrinos

After SSB the terms proportional to the VEVs provide the 3×3 Dirac and Majorana mass

3
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terms mass matrices
MD =

v√
2

Yν , MR =
w√
2

YN (3.1)

where we chose a basis such that the Majorana mass matrix MR is real, positive and diagonal, while
the Dirac mass matrix MD is complex. In flavour basis the full 6×6 mass matrix for the neutrinos
can be written as

M′ =

(
03 MT

D

MD MR

)
(3.2)

so the Dirac and Majorana mass terms appear already at tree level by SSB, i.e. not generated
radiatively.

The flavour eigenstates (νe, νµ , ντ , νc
R,1, νc

R,2, νc
R,3) can be transformed into the νi (i = 1−6)

mass eigenstates with a 6×6 unitary matrix U where the mass matrix is diagonal,

UT M′U = M = diag(m1,m2,m3,m4,m5,m6) . (3.3)

It is helpful to decompose the matrix U into two 3×6 blocks UL and U∗R,

U =

(
UL

U∗R

)
, (3.4)

so UT = (UT
L ,U

†
R) where both blocks are 6×3 matrices. It may be worth emphasizing that in spite

of what might be implied by the notation, the matrices UL and U∗R are only semi-unitary. Useful
relations of these matrices are collected in the Appendix of Ref. [11].

While the full diagonalization in Eq. (3.3) is cumbersome, one can first block-diagonalize the
block mass matrix up to small corrections:(

Mν 0
0 MN

)
=

(
1 Uas

−U†
as 1

)T (
0 MT

D

MD MR

)(
1 Uas

−U†
as 1

)
≈

(
−MT

DM−1
R MD 0

0 MR

)
(3.5)

where the matrix Uas = M†
DM−1

R is the active-sterile mixing matrix having elements Uai (a =

e, µ, τ , i = 4, 5, 6). In the last step of (3.5) we neglected blocks suppressed in the see-saw limit,
such as the off-diagonal blocks U∗asMDUas and its transpose, as well as MDUas and its transpose
as compared to MR. Whether or not such terms are indeed negligible at the physical points can
be justified numerically a-posteriori, once we have numerical estimates for the Yukawa matrices
(see below). For now we assume that −MT

DM−1
R MD and MR are the approximate mass matrices

for active and sterile neutrinos, i.e. the see-saw limit can be applied. At this point MN is already
diagonal, but Mν is not so. Hence, next we diagonalize the light neutrino mass matrix Mν :

UT
2 MνU2 = Mdiag

ν (3.6)

where U2 is a 3×3 unitary matrix.
We have experimental constraints on the upper limits the elements of Mdiag

ν [13, 14]. Even
if the tree-level matrix Mdiag

ν satisfies those limits, one has to check that the inclusion of loop
corrections to the mass matrix

δM′ =

(
δML δMT

D

δMD δMR

)
= U∗δMU† (3.7)

4
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do not upset them (after diagonalization of the corrected matrix). Here the 3× 3 blocks can be
computed as

δML = U∗LδMU†
L, δMD = URδMU†

L, δMR = URδMUT
R . (3.8)

We are especially interested in the correction δML. Its computation is straightforward, but in-
volves highly non-trivial cancellation of the gauge-dependent terms and divergent contributions
(see Ref. [11] for details). The final form of the one-loop correction can be compactly given as

δML =
1

16π2 ∑
k=1,2

[
3(ZG)

2
k1

M2
Vk

v2 F(M2
Vk
)+(ZS)

2
k1

M2
Sk

v2 F(M2
Sk
)

]
, (3.9)

and can easily be generalized to arbitrary number of U(1) gauge bosons Vk and complex scalars Sk

(see [11]). In Eq. (3.9) the finite matrix valued function

Fi j(M2) =
6

∑
a=1

(U∗L)ia(U†
L)a j

m3
a

M2

ln m2
a

M2

m2
a

M2 −1
(3.10)

is of dimension mass and the summation runs over all neutrinos. As the correction is finite, it is
also independent of the renormalization scale. The 2×2 rotation matrices ZS and ZG connect the
mass eigenstates of the scalars (h, s) and Goldstone bosons (σZ , σZ′) to their flavour eigenstates h′,
s′ and σφ , σχ : (

h
s

)
= ZS(θS)

(
h′

s′

)
and

(
σZ

σZ′

)
= ZG(θG)

(
σφ

σχ

)
(3.11)

where θS and θG are the scalar and Goldstone mixing angles obtained by diagonalizing the mass
matrix of the real scalars and that of the neutral Goldstone bosons. Explicitly, θS can be expressed
with the parameters of the scalar sector, while the Goldstone mixing angle is related simply to the
mixing angle θZ between the massive neutral gauge bosons:

tan(2θS) =−
λvw

λφ v2−λχw2 , tan(θG) = tan(θZ)
MZ′

MZ
. (3.12)

Fig. 1 shows the range that the matrix elements Fi j can take as a function of the mass mloop of
the boson in the loop (blue band), assuming normal neutrino mass hierarchy. We have highlighted
with vertical bands the relevant mass regions where the masses of the bosons in the loop lie. Fol-
lowing [12], we require the scalar s to have mass between 144 and 558 GeV needed for the stability
of the vacuum.

The eigenvalues of the F matrices can be large, even larger than 1 eV for tree-level masses in
the allowed range for the active neutrinos, depending on the mass of the boson in the loop and the
tree-level neutrino masses. However, the coupling factors suppress those significantly. For instance,
assuming the active neutrino masses to be O(10−3) eV, the corrections to the matrix elements can
be estimated as

(δML)i j < O(10−7)eV+O(10−21)×
(

MZ′

100 MeV

)2

Fi j(M2
Z′) . (3.13)

Hence, a rough estimate for the relative correction to active neutrino masses in this region of the
parameter space is O(10−4).

5
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Figure 1: Range of the matrix elements Fi jrepresented by the blue band as a function of the mass mloop

of the boson in the loop. Left plot: mtree
1 = 0.01 eV, mtree

4 = 30 keV, mtree
5 ≈ mtree

6 = 2.5 GeV. Right plot:
mtree

1 = 0.001 eV, mtree
4 = 7.1 keV, mtree

5 ≈ mtree
6 = 3.0 GeV. Taken from Ref. [11].

4. Dark matter candidate

We have firm evidence that dark matter (DM) exists in the Universe [13]. However, so far all
known evidence is based solely on the gravitational effect of the dark matter on the luminous astro-
nomical objects and on the Hubble-expansion of the Universe, which allows for various sources of
DM. Nevertheless, we know that the Universe is filled with different types of stable SM particles
or bound states of those. Hence, it might seem natural to assume that the DM has particle origin.
The only chance to observe such a particle in the laboratory or in Nature if it interacts with the
SM particles. Such an interaction must be mediated by a field, which is called portal. There are
three portals studied extensively in the literature: (i) vector boson portal when a new gauge boson
is coupled to the SM fermions, for instance through kinetic mixing; (ii) Higgs portal when the BEH
field couples to the DM particles; (iii) neutrino portal when the DM is a fermion (of dimension 3/2)
coupled to the HL operator (of dimension 5/2). With the Z′ boson coupled to the SM particles and
also to the right-handed neutrinos, in the SWSM the vector boson portal Z′ with the lightest sterile
neutrino ν4 as dark matter candidate is a natural scenario.

In order to check if such a scenario is feasible, we have to estimate the abundance of ν4 in the
Universe today, for which our starting point is Boltzmann’s equation. It is convenient to define the
comoving number density Yi of particle species i. Starting from the Boltzmann equation, we can
derive the differential equation for the dark matter candidate a. Schematically we have

dYa

dz
∝ ∑

particles

[
(rate of creation processes of particle a)

− (rate of processes annihilating particle a)
] (4.1)

where z denotes the dimensionless inverse temperature Λ/T , with Λ being an arbitrary mass scale.
The rate of a particular process can be estimated by the schematic formula

rate = (cross section or decay rate)× (available initial particle abundance) . (4.2)

6
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The first factor depends on the particle physics model. The initial abundance can be either in or out
of equilibrium. Both factors depend on the temperature. In Eq. (4.2) the cross section refers to the
thermally averaged cross section

〈σvMøl〉 ∝

∫
∞

4µ2
ds σ(s)(s−4m2

in)
√

sK1

(√
s

T

)
(4.3)

where µ = max(min,mout) with the masses of incoming and outgoing particles. For a decaying
particle of mass m the natural choice for the mass scale Λ is m itself and the decay rate is simply

〈Γ〉= Γ
K1(z)
K2(z)

, (4.4)

with Ki denoting the modified Bessel-function of the second kind. The ratio K1(z)/K2(z) is a
monotone increasing function of z, reaching unity at infinity.

There are two possible ways to reach the current abundance: (i) by freeze-out or (ii) freeze-in
mechanism. As the latter requires very small – so called feeble – couplings (smaller than 10−10), it
is very difficult test that scenario experimentally. While it is possible in the SWSM [15], here we
focus only on the freeze-out case, which will be testable in the near and medium term future.

The freeze-out mechanism for a DM species of mass m requires that (i) it decouples from
the other particles in the cosmic soup at some temperature Tdec that is typically Tdec ≈ 0.1m, and
(ii) it had been in equilibrium with the other species before decoupling. The way in which the
equilibrium distribution had been achieved is unimportant. The only necessary condition is that it
was the case before decoupling. Decoupling is a result of the Hubble-expansion, and occurs when
the rate of scattering processes becomes smaller than the rate of expansion.

The dark matter particles are produced dominantly by the decay of the Z′. Current exclusion
limits on this vector boson portal leave room for MZ′ & 20 MeV. However, a sufficiently heavy Z′

can change Big-Bang Nucleosynthesis (BBN) dramatically through the production of SM particles.
Hence we focus on the mass window with upper end below the muon pair production threshold.
With the choice of these Z′ masses it is assured that their abundance has mostly diminished by the
onset of BBN, and thus their effect will be negligible. Nevertheless, for MZ′ > mπ pion production
is kinematically allowed, which would still affect the proton-neutron conversion rate [16]. In our
analysis we neglected pion production, as Z′ with mass above' 130 MeV will turn out to be already
excluded by laboratory experiments. As a result, we consider the decays of the Z′ into electrons,
active neutrinos, and ν4.

The dark matter candidate species is produced by the decay of the Z′, hence m4 < MZ′/2.
Specifically, we consider m4 ∈ [10,50]MeV, so the decoupling temperature is Tdec = O(1)MeV. At
this temperature electrons and active neutrinos are abundant in the cosmic soup, while the presence
of heavier fermions are negligible.

An example solution of Eq. (4.1) is shown in Fig. 2 (solid line). The initial condition was given
by the equilibrium comoving number density for ν4, and the starting temperature can be chosen
around T0 ' m4/10. At high temperatures the solution follows the equilibrium comoving number
density (dashed black), while at low temperatures the dark matter decouples, and a non-zero relic
density is frozen out. To obtain the correct relic density, one needs a U(1)z coupling that is too
large, and is excluded by SM precision measurements. In the freeze-out mechanism decreasing the

7
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Figure 2: Example solution to the Boltzmann equation in the freeze-out case. The horizontal line indicates
the relic density corresponding to ΩDM = 0.265, MZ′ = 30MeV, M1 = 10MeV, gz = 1.06 ·10−3.

coupling, hence the interaction rate increases the relic density. It is essential for the SWSM DM
candidate that the resonance can dominate the integral in the rate (4.3). Exploiting this condition
we can decrease the value of the coupling while keeping the relic density unchanged.

In Fig. 3 we present the parameter space for the freeze-out scenario of dark matter production.
The dark matter particle is assumed to be the lightest right-handed neutrino with mass M1 in this
plot. The required dark couplings gz reproducing ΩDM = 0.265 are plotted against the mass of the
new gauge boson Z′ for various values of the dark matter mass. The shaded region of the parameter
space is excluded by the ae bound (dashed gray) obtained from the U(1)z contribution to the electron
anomalous magnetic moment [17], and the NA64 bound (dashed light-blue) obtained from missing
energy searches [18]. The steep parts of the lines correspond to the resonant amplification, not yet
excluded by the NA64 constraint. The lightly shaded region MZ′ > mπ is not excluded, but it may
be in conflict with the observed proton-to-neutron ratio [16], which we have not taken into account
because the relevant couplings for MZ′ & 130 MeV are already ruled out by NA64.

5. Neutrino benchmarks

While the resonant dark matter production in the freeze-out mechanism is an exciting ex-
planation to the DM puzzle, one might ask whether such neutrinos are at all allowed by known
experimental constraints, or will they be testable within the not too far future. In fact, there are
stringent bounds on the elements of the active-sterile mixing matrix in the mass range 1–80 GeV
of the sterile neutrinos, |Uai|2 . 10−5 (a = e, µ, τ , i = 4, 5, 6) [19, 20]. As mentioned before, this
matrix emerges in the diagonalization of the neutrino mass matrix in the see-saw limit. In order to
utilize those constraints, we have to parametrize the active neutrino mass matrix.

8
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Excluded by electron g-2

Excluded by NA64

Figure 3: Parameter space for the freeze-out scenario of dark matter production in the supeweak model.
Taken from Ref. [15].

According to Eqs. (3.5) and (3.6) we can write the diagonalized light neutrino mass matrix as

Mdiag
ν = UT

2 MνU2 =−UT
2 MT

DM−1
R MDU2 =−

v2

2
UT

2 YT
ν M−1

R YνU2. (5.1)

To find connection to the neutrino Yukawa matrix, we use the Casas-Ibarra parameterization [21]
by introducing the matrix

R = i
v√
2

M−1/2
R YνU2(M

diag
ν )−1/2 . (5.2)

Utilizing Eq. (5.1), we obtain RT R= 1, i.e. R is an orthogonal matrix. In general it can be complex,
but for the sake of simplicity here we focus only on real R, hence it can be parametrized in terms
of three real numbers si j (sines of the Euler angles) over the unit cube.

We can solve Eq. (5.2) for the neutrino Yukawa matrix, and obtain its adjoint as

Y†
ν =

√
2

v
U2(M

diag
ν )1/2(iR†)M1/2

R . (5.3)

The inclusion of sterile neutrinos results in non-unitary active-light neutrino mixing matrix [22, 23],
but the violation of unitarity is proportional to the active-sterile mixing squared, which is tiny,
so we neglect it in this study. Thus the active-light mixing is described by the unitary matrix
UPMNS = U†

`LU2 (usual PMNS matrix). We may choose to set U`L to unit matrix, leading to
UPMNS = U2, which ensures that for the charged leptons the flavour and mass eigenstates coincide.
For the active neutrinos the same choice is not possible. The U2 PMNS matrix may also include
the CP violating and the unknown, complex Majorana phases. We set those to zero, as we do not
expect that such phases will change our conclusions significantly.

9
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Using that MR is real and diagonal, we can write the active-sterile mixing matrix as

Uas =
v√
2

Y†
νM−1

R . (5.4)

We substitute the matrix Yν as given in Eq. (5.3) to obtain

Uas = UPMNS

√
Mdiag

ν (iR†)M−1/2
R . (5.5)

We see that even though the light and heavy neutrino masses and PMNS matrix are independent of
the choice of R matrix, the mixing between active and sterile neutrinos is not so. Hence, knowing
the PMNS matrix experimentally and assuming values for the masses of the neutrinos, we have to
scan over the full parameter space of the R matrix to find the possible Uas matrix elements.

The various accelerator, beam dump and decay search experiments constrain the combinations

U2
X =

6

∑
i=4
|UXi|2 , (X = e or µ) (5.6)

of the elements of the active-sterile mixing matrix. We can use these sums to investigate the depen-
dence of the neutrino sector of SWSM on the R matrix, the mass m1 of the lightest neutrino and
the sterile neutrino masses m4, m5 and m6. The sum U2

X in Eq. (5.6) represents the weight of sterile
components in νX (X = e or µ).

We scanned the parameters of the R matrix over the whole parameter space (s12,s13,s23) ∈
[0,1]3 to enhance the active-sterile mixings U2

e and U2
µ enough, so that those will be testable at

different upcoming experiments. We performed systematic iterative searches by locating the opti-
mal region in the unit cube, followed by a search again in the optimal sub-volume with a denser
sampling until we reached the desired accuracy of the si j values.

We searched for benchmark points giving valid physics scenarios, and being sensitive to dif-
ferent combinations of the experiments. We chose the benchmark points BP1–BP5 in such a way
that they all evade the present experimental bounds, but can be tested at future experiments. These
points are exhibited in Fig. 4. While at points BP1–BP4 the lightest sterile neutrino has mass in
the keV range, relevant to the freeze-in mechanism of SWSM DM production, the at the point BP5
m4 = 25 MeV, showing that the freeze-out mechanism is also possible. We have also checked that
active-ν4 mixing satisfied the β decay electron energy spectrum kink bounds given in [24].

It turns out that the (2,2), (2,3), (3,2) and (3,3) elements dominate Yν , as they correspond to
the heavy right-handed neutrinos ν5 and ν6. Similarly, the first column in the active-sterile mixing
matrix corresponds to mixing of the active neutrinos to ν4. As m4� m5 and m6, active-ν4 mixing
is stronger than active-ν5 and -ν6 mixing,

|Ua4| � |Ua5|, |Ua6|, a = e,µ,τ . (5.7)

6. Conclusions and outlook

In this contribution we have studied the allowed parameter space of the superweak extension
of the standard model of particle interactions via focusing on three facets of the model: (i) neutrino
mass generation, (ii) possible source for dark matter candidate and (iii) and searching for neutrino
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Figure 4: Constraints in logarithmic (U2
X ,mi) plane i = 5,6 from above are given by several experiments

(shaded area), collected from [19, 25, 26]. Experimental sensitivities of future experiments are given by
colored lines. Left plot: X = e. Right plot: X = µ .

benchmark points that can be tested experimentally in the near future. We have found that the
model provides viable phenomenology to solve these puzzles. Of course, many more studies are
needed in other sectors of the model in order to establish whether or not the SWSM can provide
explanation to all the outstanding observations at the intensity and cosmological frontiers. Even if
the model provided explanation to all such questions, it would not necessarily mean that it is the
correct BSM extension of the SM. Nevertheless, it is an interesting question whether or not a single
model can provide explanation to all puzzles and check to what extent the parameter space can be
tested in near future experiments.
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