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Pole Inflation in SUGRA Constantinos Pallis

1. Introduction

Among the many scenarios of inflation, the one which stands out in terms of its simplicity,
elegance and phenomenological success is chaotic inflation (CI). Most notably, the power-law
potentials, employed in models of CI, have the forms

𝑉I = 𝜆
2𝜙𝑛/𝑛 or 𝑉I = 𝜆

2(𝜙𝑛/2 − 𝑀2)2/𝑛 for 𝑀 ≪ 𝑚P = 1, (1)

which are very common in physics and so it is easy the identification of the inflaton 𝜙 with a field
already present in the theory. E.g., within Higgs inflation (HI) the inflaton could play, at the end
of inflation, the role of a Higgs field. However, for 𝑛 = 2 and 4 the theoretically derived values
for spectral index 𝑛s and/or tensor-to-scalar ratio 𝑟 are not consistent with the observational ones
[1]. A way out of these inconsistencies is to introduce some non-minimality in the gravitational or
the kinetic sector of the theory. In this talk, which is based on Refs. [2, 3], we focus on the latter
possibility. Namely, our proposal is tied to the introduction of a pole in the kinetic term of the
inflaton field. For this reason we call it for short Pole (chaotic) inflation (PI) [4].

Below we first briefly review the basic ingredients of PI in a non-Supersymmetric (SUSY)
framework (Sec. 1.1) and constrain the parameters of two typical models in Sec. 1.3 taking into
account the observational requirements described in Sec. 1.2. Throughout the text, the subscript
, 𝜒 denotes derivation with respect to (w.r.t) the field 𝜒, charge conjugation is denoted by a star (∗)
and we use units where the reduced Planck scale 𝑚P = 2.44 · 1018 GeV is set equal to unity.

1.1 Non-SUSY Set-up

The lagrangian of the homogenous inflaton field 𝜙 = 𝜙(𝑡) with a kinetic mixing takes the form

L =
√−g

(
𝑁𝑝

2 𝑓 2
𝑝

¤𝜙2 −𝑉I(𝜙)
)

with 𝑓𝑝 = 1 − 𝜙𝑝, 𝑝 > 0 and 𝑁𝑝 > 0. (2)

Also g is the determinant of the background Friedmann-Robertson-Walker metric 𝑔𝜇𝜈 with signature
(+,−,−,−) and dot stands for derivation w.r.t the cosmic time. Concentrating on integer 𝑝 values
we can derive the canonically normalized field, 𝜙, as follows

𝑑𝜙

𝑑𝜙
= 𝐽 =

√︁
𝑁𝑝

𝑓 2
𝑝

⇒ 𝜙 =

√︁
𝑁𝑝

𝑝
𝐵(𝜙𝑝; 1/𝑝, 0), (3)

where 𝐵(𝑧;𝑚, 𝑙) represents the incomplete Beta function. Note that 𝜙 gets increased above unity
for 𝑝 < 10 and 0 ≤ 𝜙 ≲ 1, facilitating, thereby, the attainment of PI with subplanckian 𝜙 values.
Inverting this function we obtain, e.g.,

𝜙 =


1 − 𝑒−𝜙/

√
𝑁1 for 𝑝 = 1,

tanh
(
𝜙√
𝑁2

)
for 𝑝 = 2 .

(4)

As a consequence, Eq. (2) can be brought into the form

L =
√−g

(
1
2
¤̂
𝜙

2
−𝑉I(𝜙(𝜙))

)
. (5)
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For 𝜙 ≫ 1, 𝑉I(𝜙) – expressed in terms of 𝜙 – develops a plateau, and so it becomes suitable for
driving inflation of chaotic type called E-Model Inflation [5, 6] (or 𝛼-Starobinsky model [7]) and
T-Model Inflation [6, 8] for 𝑝 = 1 and 2 respectively.

1.2 Inflationary Observables – Constraints

The analysis of PI can be performed using the standard slow-roll approximation as analyzed
below, together with the relevant observational and theoretical requirements that should be imposed.

(a) The number of e-foldings 𝑁★ that the scale 𝑘★ = 0.05/Mpc experiences during PI must
be enough for the resolution of the problems of standard Big Bang, i.e., [9]

𝑁★ =

∫ 𝜙∗

𝜙f

𝑑𝜙
𝑉I

𝑉I,𝜙
≃ 61.3 + 1 − 3𝑤rh

12(1 + 𝑤rh)
ln
𝜋2𝑔rh∗𝑇4

rh
30𝑉I(𝜙f)

+ 1
4

ln
𝑉I(𝜙★)2

𝑔
1/3
rh∗𝑉I(𝜙f)

, (6)

where 𝜙∗ is the value of 𝜙 when 𝑘★ crosses the inflationary horizon whereas 𝜙f is the value of 𝜙 at
the end of PI, which can be found, in the slow-roll approximation, from the condition

max{𝜖 (𝜙f), |𝜂(𝜙f) |} = 1, where 𝜖 =
1
2

(
𝑉I,𝜙

𝑉I

)2

and 𝜂 =
𝑉I,𝜙𝜙

𝑉I
. (1.7a)

Also we assume that PI is followed in turn by an oscillatory phase with mean equation-of-state
parameter 𝑤rh, radiation and matter domination. We determine it applying the formula [3]

𝑤rh = 2

∫ 𝜙mx
𝜙mn

𝑑𝜙𝐽 (1 −𝑉I/𝑉I(𝜙mx))1/2∫ 𝜙mx
𝜙mn

𝑑𝜙𝐽 (1 −𝑉I/𝑉I(𝜙mx))−1/2
− 1, (1.7b)

where 𝜙mn = ⟨𝜙⟩ is the vacuum expectation value (v.e.vs) of 𝜙 after PI. Motivated by implementations
[10] of non-thermal leptogenesis, which may follow PI, we set 𝑇rh ≃ 109 GeV for the reheat
temperature. Indicative values for the energy-density effective number of degrees of freedom
include 𝑔rh∗ = 106.75 or 228.75 corresponding to the Standard Model (SM) or Minimal SUSY SM
(MSSM) spectrum respectively.

(b) The amplitude 𝐴s of the power spectrum of the curvature perturbations generated by 𝜙 at
𝑘★ has to be consistent with data [9], i.e.,

𝐴s =
1

12 𝜋2
𝑉I(𝜙∗)3

𝑉I,𝜙 (𝜙∗)2
≃ 2.105 · 10−9 . (8)

(c) The remaining inflationary observables (𝑛s, its running 𝛼s and 𝑟) have to be consistent
with the latest Planck release 4 (PR4), Baryon Acoustic Oscillations (BAO), CMB-lensing and
BICEP/Keck (BK18) data [1, 11], i.e.,

(i) 𝑛s = 0.965 ± 0.009 and (ii) 𝑟 ≤ 0.032, (9)

at 95% confidence level (c.l.) – pertaining to the ΛCDM+𝑟 framework with |𝛼s | ≪ 0.01. These
observables are estimated through the relations

(i) 𝑛s = 1 − 6�̂�★ + 2𝜂★, (ii) 𝛼s =
2
3

(
4𝜂2 − (𝑛s − 1)2

)
− 2𝜉★ and (iii) 𝑟 = 16�̂�★ , (10)

with 𝜉 = 𝑉I,𝜙𝑉I,𝜙𝜙𝜙/𝑉2
I – the variables with subscript ★ are evaluated at 𝜙 = 𝜙★.
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(d) The effective theory describing PI has to remain valid up to a UV cutoff scale ΛUV ≃ 𝑚P

to ensure the stability of our inflationary solutions, i.e.,

(i) 𝑉I(𝜙★)1/4 ≤ ΛUV and (ii) 𝜙★ ≤ ΛUV. (11)

1.3 Results

Using the criteria of Sec. 1.2 we can now analyze the inflationary models based on the potential
in Eq. (1) and the kinetic mixing in Eq. (2) for 𝑝 = 1 and 2. The slow-roll parameters are

𝜖 =
𝑛2 𝑓𝑝

2𝑁𝑝𝜙2 and 𝜂 =
𝑛 𝑓𝑝

𝑁𝑝𝜙
2 (𝑛 − 1 − (𝑛 + 𝑝 − 1)𝜙𝑝) , (12)

whereas from Eq. (6) we can compute

𝑁★ ≃
{
𝑁1 (𝜙★ + 𝑓1★ ln 𝑓1★) /𝑛 𝑓1★ for 𝑝 = 1,

𝑁2𝜙
2
★/2𝑛 𝑓2★ for 𝑝 = 2,

(13)

where 𝑓𝑝★ = 𝑓𝑝 (𝜙★). Since 𝑓𝑝★ appears in the denominator, 𝑁★ increases drastically as 𝜙★
approaches unity, assuring thereby the achievement of efficient PI. The relevant tuning can be
somehow quantified defining the quantity

Δ★ = 1 − 𝜙★. (14)

The naturalness of the attainment of PI increases with Δ★. Imposing the condition of Eq. (1.7a) and
solving Eq. (13) w.r.t 𝜙★, we arrive at

𝜙f ≪ 𝜙★ ≃
{
𝑛𝑁★/(𝑛𝑁★ + 𝑁1) for 𝑝 = 1,√︁

2𝑛𝑁★/(2𝑛𝑁★ + 𝑁2) for 𝑝 = 2 .
(15)

where we neglect the logarithmic contribution in the first of the relations in Eq. (13). We remark
that PI is attained for 𝜙 < 1 – and so Eq. (11) is fulfilled – thanks to the location of the pole at
𝜙 = 1. On the other hand, Eq. (8) implies

𝜆 ≃
(√︁

3𝑛𝑁𝐴s𝜋/𝑁★
) {

2 for 𝑝 = 1,

1 for 𝑝 = 2 .
(16)

From Eq. (10) we obtain the model’s predictions

𝑛s ≃ 1 − 2/𝑁★, 𝛼s ≃ −2/𝑁2
★ and 𝑟 ≃

{
8𝑁1/𝑁2

★ for 𝑝 = 1,

2𝑁2/𝑁2
★ for 𝑝 = 2 ,

(17)

which are independent of 𝑛 and for this reason these models are called 𝑁-attractors [5–8]. However,
the variation of 𝑛 in Eq. (1) generates a variation to 𝑤rh in Eq. (1.7b) and via Eq. (6) to 𝑁★ which
slightly distinguish the predictions above. E.g., fixing 𝑁1 = 10 we obtain

𝑤rh ≃
{
−0.08,

0.19,
𝑁★ ≃

{
49.4,

54.6,
Δ★ ≃

{
0.074,

0.04,
𝑛s ≃

{
0.963

0.965
𝑟 ≃ 0.02 for 𝑛 =

{
2,

4
(1.18a)
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and 𝑝 = 1 with 𝛼s ∼ 10−4. Similar 𝛼s values are obtained setting 𝑁2 = 10 and 𝑝 = 2 which yields

𝑤rh ≃
{
−0.04,

0.23,
𝑁★ ≃

{
50.2,

54.6,
Δ★ ≃

{
0.024,

0.01,
𝑛s ≃

{
0.962,

0.963,
𝑟 ≃

{
0.0074,

0.0064,
for 𝑛 =

{
2.

4.
(1.18b)

Notice that Δ★ is larger for 𝑝 = 1. Imposing the bound on 𝑟 in Eq. (9) we can find a robust upper
bound on 𝑁𝑝. Namely, we find numerically

𝑁1 ≲ 19 and 𝑁2 ≲ 55. (19)

Therefore, we can conclude that the presence of 𝑓𝑝 in Eq. (2) revitalizes CI rendering it fully
consistent with the present data in Eq. (9) without introducing any complication with the validity of
the effective theory. Recall [12] that the last problem plagues models of CI with large non-minimal
coupling to gravity for 𝑛 > 2.

1.4 Outline

It would be certainly interesting to inquire if it is possible to realize similar models of PI in a
SUSY framework where a lot of the problems of SM are addressed. We below describe how we
can formulate PI in the context of Supergravity (SUGRA) in Sec. 2 and we specify six models of PI:
three models (𝛿CI, CI2, CI4) employing a gauge singlet inflaton in Sec. 3 and three (𝛿HI, HI4, HI8)
with a gauge non-singlet inflaton in Sec. 4.

2. Realization of PI Within SUGRA

We start our investigation presenting the basic formulation of scalar theory within SUGRA in
Sec. 2.1 and then – in Sec. 2.2 – we outline our strategy in constructing viable models of PI.

2.1 General Set-up

The part of the SUGRA lagrangian including the (complex) scalar fields 𝑍𝛼 can be written as

L =
√−g

(
𝐾𝛼𝛽𝐷𝜇𝑍

𝛼𝐷𝜇𝑍∗𝛽 −𝑉
)
, (2.20a)

where the kinetic mixing is controlled by the Kähler potential 𝐾 and the relevant metric defined as

𝐾𝛼𝛽 = 𝐾,𝑍𝛼𝑍∗�̄� > 0 with 𝐾𝛽𝛼𝐾𝛼�̄� = 𝛿
𝛽

�̄�
. (2.20b)

Also, the covariant derivatives for the scalar fields 𝑍𝛼 are given by

𝐷𝜇𝑍
𝛼 = 𝜕𝜇𝑍

𝛼 + 𝑖𝑔𝐴a
𝜇𝑇

a
𝛼𝛽𝑍

𝛽 (2.20c)

with 𝐴a
𝜇 being the vector gauge fields, 𝑔 the (unified) gauge coupling constant and 𝑇a with a =

1, ..., dim𝐺GUT the generators of a gauge group 𝐺GUT. Here and henceforth, the scalar components
of the various superfields are denoted by the same superfield symbol.

The SUGRA scalar potential, 𝑉SUGRA, is given in terms of 𝐾 , and the superpotential,𝑊 , by

𝑉SUGRA = 𝑉F +𝑉D with 𝑉F = 𝑒𝐾
(
𝐾𝛼𝛽F𝛼F∗

𝛽
− 3|𝑊 |2

)
and 𝑉D = 𝑔2

∑︁
a

DaDa/2, (2.20d)
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where a trivial gauge kinetic function is adopted whereas the F- and D-terms read

F𝛼 = 𝑊,𝑍𝛼 + 𝐾,𝑍𝛼𝑊 and Da = 𝑍𝛼 (𝑇a)𝛼𝛽 𝐾𝛽 with 𝐾𝛼 = 𝐾,𝑍𝛼 . (2.20e)

Therefore the models of PI in Sec. 1.1 can be supersymmetrized, if we select conveniently the
functions 𝐾 and𝑊 so that Eqs. (1) and (2) are reproduced.

2.2 Modeling PI in SUGRA

We concentrate on PI driven by 𝑉F. To achieve this, we have to assure that 𝑉D = 0 during PI.
This condition may be attained in the following two cases:

• If the inflaton is (the radial part of) a gauge singlet superfield 𝑍2 := Φ. In this case, Φ has
obviously zero contribution to 𝑉D.

• If the inflaton is the radial part of a conjugate pair of Higgs superfields, 𝑍2 := Φ and 𝑍3 := Φ̄,
which are parameterized so as 𝑉D = 0 – see Sec. 4.

The achievement of a kinetic term in Eq. (2.20a) similar to that in Eq. (2) for 𝑝 = 1 and 2 we
need to establish suitable 𝐾’s so that

⟨𝐾⟩I = −𝑁 ln 𝑓𝑝 and ⟨𝐾𝛼𝛽⟩I = 𝑁/ 𝑓𝑝 (21)

with 𝑁 related to 𝑁𝑝. However, from the F-term contribution to Eq. (2.20d), we remark that 𝐾
affects besides the kinetic mixing 𝑉SUGRA, which, in turn, depends on the 𝑊 too. Therefore, 𝑓𝑝 is
generically expected to emerge also in the denominator of𝑉SUGRA making difficult the establishment
of an inflationary era. This problem can be surpassed [2, 3] by two alternative strategies:

• Adjusting𝑊 and constraining the prefactor of 𝐾’s, so that the pole is removed from 𝑉SUGRA

thanks to cancellations [2, 3, 15] which introduce some tuning, though.

• Adopting a structured 𝐾 which yields the desired kinetic terms in Eq. (2) but remains invisible
from 𝑉SUGRA [2, 3, 16]. In a such case, any tuning on the𝑊 parameters can be eluded

In Sec. 3 and 4 we show details on the realization of these scenaria taking into account that 𝑓1
in Eq. (2) can be exclusively associated with a gauge singlet inflaton whereas 𝑓2 can be related to a
gauge non-singlet inflaton.

We reserved 𝛼 = 1 for a gauge singlet superfield, 𝑍1 = 𝑆 called stabilizer or goldstino, which
assists [13] us to formulate PI of chaotic type in SUGRA. Its presence in𝑊 is determined as follows:

• It appears linearly in𝑊 multiplying its other terms. To achieve technically such a adjustment
we require that 𝑆 and𝑊 are equally charged under an 𝑅 symmetry.

• It generates for ⟨𝑆⟩I = 0 the inflationary potential via the only term of 𝑉SUGRA which remains
alive

𝑉I = ⟨𝑉F⟩I = ⟨𝑒𝐾𝐾𝑆𝑆∗ |𝑊,𝑆 |2⟩I, (22)

where the symbol “⟨𝑄⟩I" denotes the value of a quantity 𝑄 during PI.
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• It assures the boundedness of 𝑉I. Indeed, if we set ⟨𝑆⟩I = 0, then ⟨𝐾,𝑧𝛼𝑊⟩I = 0 for 𝛼 ≠ 1 and
−3|⟨𝑊⟩I |2 = 0. Obviously, non-vanishing values of the latter term may render 𝑉F unbounded
from below.

• It can be stabilized at ⟨𝑆⟩I = 0 without invoking higher order terms, if we select [14]

𝐾2 = 𝑁𝑆 ln
(
1 + |𝑆 |2/𝑁𝑆

)
⇒ ⟨𝐾𝑆𝑆∗2 ⟩I = 1 with 0 < 𝑁𝑆 < 6. (23)

𝐾2 parameterizes the compact manifold 𝑆𝑈 (2)/𝑈 (1). Note that for ⟨𝑆⟩I = 0, 𝑆 is canonically
normalized and so we do not mention it again henceforth.

3. PI With a Gauge Singlet Inflaton

The SUGRA setup for this case is presented in Sec. 3.1 and then – in Sec. 3.2 – we describe
the salient features of this model and we expose our results in Sec. 3.3.

3.1 SUGRA Set-up

This setting is realized in presence of two gauge singlet superfields 𝑆 and Φ. We adopt the
most general renormalizable𝑊 consistent with the 𝑅 symmetry mentioned in Sec. 2.2, i.e.,

𝑊 = 𝑆

(
𝜆1Φ + 𝜆2Φ

2 − 𝑀2
)

(24)

where 𝜆1, 𝜆2 and 𝑀 are free parameters. As regards 𝐾 , this includes besides 𝐾2 in Eq. (23) one of
the following 𝐾’s, 𝐾1s or 𝐾1s, which yield a pole of order one in the kinetic term of Φ and share the
same geometry – see Ref. [3]. Namely,

𝐾1s = −𝑁 ln (1 − (Φ +Φ∗)/2) or 𝐾1s = −𝑁 ln
(1 −Φ/2 −Φ∗/2)

(1 −Φ)1/2(1 −Φ∗)1/2 , (25)

with Re(Φ) < 1 and 𝑁 > 0. We opt a pole of order one as the simplest choice although models with
a pole of order two were also proposed [5]. Based on the 𝐾’s above, we can define the following
three versions of PI:

• 𝛿CI, where the total 𝐾 is chosen as

𝐾21s = 𝐾2 + 𝐾1s. (3.26a)

The elimination of pole in 𝑉I discussed above can be applied if we set

𝑁 = 2 and 𝑟21 = −𝜆2/𝜆1 ≃ 1 + 𝛿21 with 𝛿21 ∼ 0 and 𝑀 ≪ 1 (3.26b)

such that the denominator including the pole in 𝑉I is (almost) cancelled out.

• CI2 and CI4, which do not display any denominator in 𝑉I employing

𝐾21s = 𝐾2 + 𝐾1s (27)

with free parameters 𝑁 , 𝜆1, 𝜆2 and 𝑀 . The discrimination of these models depends on which
of the two 𝜙-dependent terms in Eq. (24) dominates – see below.
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3.2 Structure of the Inflationary Potential

An inflationary potential of the type in Eq. (1) can be derived from Eq. (22) specifying the
inflationary trajectory as follows

⟨𝑆⟩I = 0 and ⟨𝜃⟩I := arg⟨Φ⟩I = 0. (28)

Inserting the quantities above into Eq. (22) and taking into account Eq. (23) and

⟨𝑒𝐾 ⟩I =

{
𝑓 −𝑁1 for 𝐾 = 𝐾21s,

1 for 𝐾 = 𝐾21s,
(29)

we arrive at the following master equation

𝑉I = 𝜆
2


(
𝜙 − 𝑟21𝜙

2 − 𝑀2
1
)2/ 𝑓 𝑁1 for 𝛿CI,(

𝜙 − 𝑟21𝜙
2 − 𝑀2

1
)2 for CI2,(

𝜙2 − 𝑟12𝜙 − 𝑀2
2
)2 for CI4,

(30)

where 𝜙 = Re(Φ), 𝑟𝑖 𝑗 = −𝜆𝑖/𝜆 𝑗 with 𝑖, 𝑗 = 1, 2 and 𝜆 and 𝑀𝑖 are identified as follows

𝜆 =

{
𝜆1 and 𝑀1 = 𝑀/

√
𝜆1 for 𝛿CI and CI2,

𝜆2 and 𝑀2 = 𝑀/
√
𝜆2 for CI4.

(31)

As advertised in Sec. 3.1, the pole in 𝑓1 is presumably present in 𝑉I of 𝛿CI, but it disappears for CI2
and CI4. The arrangement of Eq. (3.26b), though, renders the pole harmless for 𝛿CI.

The correct description of PI is feasible if we introduce the canonically normalized fields, 𝜙
and �̂� as follows

⟨𝐾ΦΦ∗⟩I | ¤Φ|2 ≃ 1
2

(
¤̂
𝜙

2
+ ¤̂
𝜃

2
)

⇒ 𝑑𝜙

𝑑𝜙
= 𝐽 =

√︁
𝑁/2
𝑓1

and �̂� ≃ 𝐽𝜙𝜃 with ⟨𝐾ΦΦ∗⟩I =
𝑁

4 𝑓 2
1
. (32)

We see that the relation between 𝜙 and 𝜙 is identical with Eq. (3) for 𝑝 = 1, if we do the replacement
𝑁1 = 𝑁/2. We expect that CI2 [CI4] yield similar results with the non-SUSY models of PI with
𝑝 = 1 in Eq. (2) and 𝑛 = 2 [𝑛 = 4] in Eq. (1), whereas 𝛿CI is totally autonomous.

To check the stability of 𝑉SUGRA in Eq. (2.20d) along the trajectory in Eq. (28) w.r.t the
fluctuations of 𝑍𝛼’s, we construct the mass spectrum of the theory. Our results are summarized
in Table 1. Taking into the limit 𝛿21 = 𝑀1 = 0 for 𝛿CI, 𝑟21 = 𝑀1 = 0 for CI2 and 𝑟12 = 𝑀2 = 0
for CI4, we find the expressions of the masses squared 𝑚2

𝜒𝛼 (with 𝜒𝛼 = 𝜃 and 𝑠) arranged in
Table 1. We there display the masses𝑚2

𝜓± of the corresponding fermions too – we define 𝜓Φ = 𝐽𝜓Φ

where 𝜓Φ and 𝜓𝑆 are the Weyl spinors associated with 𝑆 and Φ respectively. We notice that the
relevant expressions can take a unified form for all models – recall that we use 𝑁 = 2 in 𝛿CI – and
approach, close to 𝜙 = 𝜙★ ≃ 1, rather well the quite lengthy, exact ones employed in our numerical
computation. From them we can appreciate the role of 𝑁𝑆 < 6 in retaining positive 𝑚2

𝑠. Also, we
confirm that 𝑚2

𝜒𝛼 ≫ 𝐻2
I ≃ 𝑉I0/3 for 𝜙f ≤ 𝜙 ≤ 𝜙★.
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Fields Eigen- Masses Squared

states 𝐾 = 𝐾21s 𝐾 = 𝐾21s

1 real scalar �̂� 𝑚2
𝜃

6𝐻2
I

2 real scalars �̂�1, �̂�2 𝑚2
𝑠 6𝐻2

I /𝑁𝑆

2 Weyl spinors (𝜓Φ ± 𝜓𝑆)/
√

2 𝑚2
𝜓± 6𝑛(1 − 𝜙)2𝐻2

I /𝑁𝜙
2

Table 1: Mass spectrum of our CI models along the inflationary trajectory of Eq. (3.5) – we take 𝑛 = 1 for
𝛿CI and CI2 whereas 𝑛 = 2 for CI4.

3.3 Results

The dynamics of the analyzed models is analytically studied in Ref. [3]. We here focus on the
numerical results. After imposing Eqs. (6) and (8) the free parameters of

𝛿CI, CI2, CI4 are (𝛿21, 𝑀1), (𝑁, 𝑟21, 𝑀1) and (𝑁, 𝑟12, 𝑀2),

respectively. Recall that we use 𝑁 = 2 exclusively for 𝛿CI. Fixing 𝑀1 = 0.001 for 𝛿CI, 𝑀1 = 0.01
and 𝑟21 = 0.001 for CI2 and 𝑀2 = 0.01 and 𝑟12 = 0.001 for CI4, we obtain the curves plotted and
compared to the observational data in Fig. 1. We observe that:

(a) For 𝛿CI the resulting 𝑛s and 𝑟 increase with |𝛿21 | – see solid line in Fig. 1. This increase,
though, is more drastic for 𝑛s which covers the whole allowed range in Eq. (9). From the considered
data we collect the results

0 ≲ 𝛿21/10−6 ≲ 3.3 3.5 ≲ 𝑟/10−3 ≲ 5.3 and 9 · 10−3 ≲ Δ★ ≲ 0.01. (33)

In all cases we obtain 𝑁★ ≃ 44 consistently with Eq. (6) and the resulting 𝑤rh ≃ −0.237 from
Eq. (1.7b). Fixing 𝑛s = 0.965 we find 𝛿21 = −1.7 · 10−5 and 𝑟 = 0.0044 – see the leftmost column
of the Table in Fig. 1.

(b) For CI2 and CI4, 𝑛s and 𝑟 increase with 𝑁 and Δ★ which increases w.r.t its value in 𝛿CI.
Namely, 𝑛s approaches its central observational value in Eq. (9) whereas the bound on 𝑟 yields an
upper bound on 𝑁 . More quantitatively, for CI2 – see dashed line in Fig. 1 – we obtain

0.96 ≲ 𝑛s ≲ 0.9654, 0.1 ≲ 𝑁 ≲ 65, 0.05 ≲ Δ★/10−2 ≲ 16.7 and 0.0025 ≲ 𝑟 ≲ 0.039 (3.34a)

with 𝑤rh ≃ −0.05 and 𝑁★ ≃ 50. On the other hand, for CI4 – see dot-dashed line in Fig. 1 – we
obtain

0.963 ≲ 𝑛s ≲ 0.965, 0.1 ≲ 𝑁 ≲ 55, 0.23 ≲ Δ★/10−2 ≲ 8.5 and 0.0001 ≲ 𝑟 ≲ 0.04 (3.34b)

with 𝑤rh ≃ (0.25 − 0.39) and 𝑁★ ≃ 54 − 56. In both equations above the lower bound on 𝑁 is just
artificial. For 𝑁 = 10, specific values of parameters and observables are arranged in the rightmost
columns of the Table in Fig. 1.
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 CI2

 CI4

r 
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1

)

 n
s
 (0.1)

1

Model: 𝛿CI CI2 CI4
𝛿21 / 𝑟21 / 𝑟12 −1.7 · 10−5 0.001 0.001

𝑁 2 10 10
𝜙★/0.1 9.9 9.53 9.84
Δ★(%) 1 4.7 2
𝜙f/0.1 6.66 3.7 5.6
𝑤rh −0.24 −0.08 0.26
𝑁★ 44.4 51.5 55.5

𝜆/10−5 1.2 2.1 1.9
𝑛s/0.1 9.65 9.64 9.65

−𝛼s/10−4 11.4 6.7 6.2
𝑟/10−2 0.44 1.3 1.1

Figure 1: Allowed curves in the 𝑛s − 𝑟 plane for (i) 𝛿CI, 𝑀1 = 0.01 and various 𝛿21’s indicated on the solid
line or (ii) CI2, 𝑀1 = 0.01 and 𝑟21 = 0.001 or CI4, 𝑀2 = 0.01 and 𝑟12 = 0.001 and various 𝑁’s indicated on
the dashed or dot-dashed line respectively. The marginalized joint 68% [95%] c.l. regions [11] from PR4,
BK18, BAO and lensing data-sets are depicted by the dark [light] shaded contours. The relevant field values,
parameters and observables corresponding to points shown in the plot are listed in the Table.

4. PI With a Gauge non-Singlet Inflaton

In the present scheme the inflaton field can be identified with the radial component of a conjugate
pair of Higgs superfields. We here focus on the Higgs superfields, Φ̄ and Φ, with 𝐵 − 𝐿 = −1, 1
which break the GUT symmetry 𝐺GUT = 𝐺SM ×𝑈 (1)𝐵−𝐿 down to SM gauge group 𝐺SM through
their v.e.vs. We below outline the SUGRA setting in Sec. 4.1 its inflationary outcome in Sec. 4.2)
and its predictions in Sec. 4.3. We here update the results of Ref. [2], taking into account the recent
data of Ref. [11], and enrich its content adding the model HI8.

4.1 SUGRA Set-up

In accordance with the imposed symmetries, we here adopt the following𝑊 – cf. Ref. [17]:

𝑊 = 𝑆

(
1
2
𝜆2Φ̄Φ + 𝜆4(Φ̄Φ)2 − 1

4
𝑀2

)
, (35)

where 𝜆2, 𝜆4 and 𝑀 are free parameters. In contrast to Eq. (24), we here include the first allowed
non-renormalizable term to activate the pole-elimination method – see below. On the other hand,
the invariance of 𝐾 under𝐺GUT enforces us to introduce a pole of order two within the kinetic terms
of Φ̄ −Φ system. One possible option – for another equivalent one see Ref. [2] – is

𝐾21 = −𝑁 ln
(
1 − |Φ|2 − |Φ̄|2

)
or 𝐾21 = −𝑁 ln

1 − |Φ|2 − |Φ̄|2

(1 − 2Φ̄Φ)1/2(1 − 2Φ̄∗Φ∗)1/2 , (36)

which parameterizes the manifold M21 = 𝑆𝑈 (2, 1)/(𝑆𝑈 (2) ×𝑈 (1)) [2] – note that the present 𝑁
is twice that defined in the first paper of Ref. [2]. From the selected above𝑊 and 𝐾’s, the following
inflationary models emerge:

• 𝛿HI, where we employ
𝐾221 = 𝐾2 + 𝐾21 (4.37a)
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and ensure an elimination of the singular denominator appearing in 𝑉I setting

𝑁 = 2 and 𝑟42 = −𝜆4/𝜆2 ≃ 1 + 𝛿42 with 𝛿42 ∼ 0 and 𝑀 ≪ 1. (4.37b)

• HI4 and HI8, which do not display any singularity in 𝑉I, employing

𝐾221 = 𝐾2 + 𝐾21 (38)

with free parameters 𝑁 , 𝜆2, 𝜆4 and 𝑀 . Their discrimination depends on which of the two
𝜙-dependent terms in Eq. (35) dominates – see below.

4.2 Structure of the Inflationary Potential

As in Sec. 3.2, we determine the inflationary potential,𝑉I, selecting a suitable parameterization
of the involved superfields. In particular, we set

Φ = 𝜙𝑒𝑖 𝜃 cos 𝜃Φ and Φ̄ = 𝜙𝑒𝑖 𝜃 sin 𝜃Φ with 0 ≤ 𝜃Φ ≤ 𝜋/2 and 𝑆 = (𝑠 + 𝑖𝑠) /
√

2. (39)

We can easily verify that a D-flat direction is

⟨𝜃⟩I = ⟨𝜃⟩I = 0, ⟨𝜃Φ⟩I = 𝜋/4 and ⟨𝑆⟩I = 0, (40)

which can be qualified as inflationary path. Indeed, for both 𝐾’s in Eq. (27), the D term due to
𝐵 − 𝐿 symmetry during PI is

⟨D𝐵𝐿⟩I = 𝑁
(
|⟨Φ⟩I |2 − |⟨Φ̄⟩I |2

)
/
(
1 − |⟨Φ⟩I |2 − |⟨Φ̄⟩I |2

)
= 0. (41)

Also, regarding the exponential prefactor of 𝑉F in Eq. (2.20d) we obtain

⟨𝑒𝐾 ⟩I =

{
𝑓 −𝑁2 for 𝐾 = 𝐾21,

1 for 𝐾 = 𝐾21,
(42)

Substituting it and Eqs. (23) and (35) into Eq. (22), this takes its master form

𝑉I =
𝜆2

16


(
𝜙2 − 𝑟42𝜙

4 − 𝑀2
2
)2/ 𝑓 𝑁2 for 𝛿HI,(

𝜙2 − 𝑟42𝜙
4 − 𝑀2

2
)2 for HI4,(

𝜙4 − 𝑟24𝜙
2 − 𝑀2

4
)2 for HI8,

(43)

where 𝑟𝑖 𝑗 = −𝜆𝑖/𝜆 𝑗 with 𝑖, 𝑗 = 1, 2 and 𝜆 and 𝑀𝑖 are identified as follows

𝜆 =

{
𝜆2 and 𝑀2 = 𝑀/

√
𝜆2 for 𝛿HI and HI4,

𝜆4 and 𝑀4 = 𝑀/
√
𝜆4 for HI8.

(44)

From Eq. (43), we infer that the pole in 𝑓2 is presumably present in 𝑉I of 𝛿HI but it disappears in
𝑉I of HI4 and HI8and so no 𝑁 dependence in 𝑉I arises. The elimination of the pole in the regime of
Eq. (4.37b) lets open the realization of 𝛿HI, though.
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Fields Eigen- Masses Squared

states 𝐾 = 𝐾221 𝐾 = 𝐾221

2 real �̂�+ 𝑚2
𝜃+

3𝐻2
I

scalars �̂�Φ 𝑚2
𝜃Φ

𝑀2
𝐵𝐿

+ 6𝐻2
I (1 + 2/𝑁 − 2/𝑁𝜙2)

1 complex 𝑠, 𝑠 𝑚2
𝑠 6𝐻2

I (1/𝑁𝑆 − 8(1 − 𝜙2)/𝑁 + 𝑁𝜙2/2 6𝐻2
I (1/𝑁𝑆 − 4/𝑁

scalar +2(1 − 2𝜙2) + 8𝜙2/𝑁) +2/𝑁𝜙2 + 2𝜙2/𝑁)

1 gauge boson 𝐴𝐵𝐿 𝑀2
𝐵𝐿

2𝑁𝑔2𝜙2/ 𝑓 2
2

4 Weyl 𝜓± 𝑚2
𝜓± 12 𝑓 2

2 𝐻
2
I /𝑁

2𝜙2

spinors λ𝐵𝐿 , 𝜓Φ− 𝑀2
𝐵𝐿

2𝑁𝑔2𝜙2/ 𝑓 2
2

Table 2: Mass spectrum the models of HI along the inflationary trajectory of Eq. (4.8).

To obtain PI we have to correctly identify the canonically normalized (hatted) fields of the
Φ̄ −Φ system, defined as follows

⟨𝐾𝛼𝛽⟩I ¤𝑍𝛼 ¤𝑍∗𝛽 ≃ 1
2

(
¤̂
𝜙

2
+ ¤̂
𝜃

2
+ +

¤̂
𝜃

2
− + ¤̂

𝜃
2
Φ

)
for 𝛼 = 2, 3. (4.45a)

– recall that 𝑍1 = 𝑆 is already canonically normalized for ⟨𝑆⟩I = 0 as in Eq. (40). We find(
⟨𝐾𝛼𝛽⟩I

)
= ⟨𝑀ΦΦ̄⟩I with ⟨𝑀ΦΦ̄⟩I =

𝜅𝜙2

2

2/𝜙2 − 1 1
1 2/𝜙2 − 1

, 𝜅 = 𝑁

𝑓 2
2
. (4.45b)

We then diagonalize ⟨𝑀ΦΦ̄⟩I via a similarity transformation, i.e.,

𝑈ΦΦ̄⟨𝑀ΦΦ̄⟩I𝑈
T
ΦΦ̄

= diag (𝜅+, 𝜅−) , where 𝑈ΦΦ̄ =
1
√

2

 1 1
−1 1

, 𝜅+ = 𝜅 and 𝜅− = 𝜅 𝑓2 . (46)

Inserting the expressions above in Eq. (4.45a) we obtain the hatted fields

𝑑𝜙

𝑑𝜙
= 𝐽 =

√
2𝑁
𝑓2

, �̂�+ ≃ √
𝜅+𝜙𝜃+, �̂�− ≃ √

𝜅−𝜙𝜃− and �̂�Φ ≃ 𝜙
√︁

2𝜅− (𝜃Φ − 𝜋/4) , (47)

where 𝜃± =
(
𝜃 ± 𝜃

)
/
√

2. From the first equation above we conclude that Eq. (3) for 𝑝 = 2 is
reproduced for 𝑁2 = 2𝑁 . We expect that 𝛿HI has similar behavior with 𝛿CI, found in Sec. 3.2
whereas HI4 [HI8] may be interpreted as supersymmetrization of the non-SUSY models with 𝑝 = 2
in Eq. (2) and 𝑛 = 4 [𝑛 = 8] in Eq. (1).

Having defined the canonically normalized scalar fields, we can derive the mass spectrum of
our models along the direction of Eq. (40) and verify its stability against the fluctuations of the
non-inflaton fields. Approximate, quite precise though, expressions for 𝜙 = 𝜙★ ∼ 1 are arranged
in Table 2. We confine ourselves to the limits 𝛿42 = 𝑀2 = 0 for 𝛿HI, 𝑟42 = 𝑀2 = 0 for HI4 and
𝑟24 = 𝑀4 = 0 for HI8. As in the case of the spectrum in Table 1, 𝑁𝑆 < 6 plays a crucial role in
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retaining positive and heavy enough 𝑚2
𝑠. Here, however, we also display the masses, 𝑀𝐵𝐿 , of the

gauge boson 𝐴𝐵𝐿 (which signals the fact that 𝑈 (1)𝐵−𝐿 is broken during PI) and the masses of the
corresponding fermions. The unspecified eigenstate 𝜓± is defined as

𝜓± = (𝜓Φ+ ± 𝜓𝑆)/
√

2 where 𝜓Φ± = (𝜓Φ ± 𝜓Φ̄)/
√

2 , (48)

with the spinors 𝜓𝑆 and 𝜓Φ± being associated with the superfields 𝑆 and Φ̄ − Φ. It is also evident
that 𝐴𝐵𝐿 becomes massive absorbing the massless Goldstone boson associated with �̂�−.

The breakdown of𝑈 (1)𝐵−𝐿 during PI is crucial in order to avoid the production of topological
defects during the 𝐵 − 𝐿 phase transition, which takes place after end of PI. Indeed, along the
direction of Eq. (40), 𝑉I develops a SUSY vacuum lying at the direction

⟨𝑆⟩ = 0 and ⟨𝜙⟩ =
{(

1 − (1 − 4𝑟42𝑀
2
2 )

1/2)1/2 /
√

2𝑟42 for 𝛿HI and HI4,(
𝑟24 + (𝑟2

24 + 4𝑀2
4 )

1/2)1/2 /
√

2 for HI8,
(49)

i.e.,𝑈 (1)𝐵−𝐿 is finally spontaneously broken via the v.e.v of 𝜙.

4.3 Results

As in Sec. 3.3 we here focus on our numerical results – our analytic ones for 𝛿HI and HI4 are
presented in Ref. [2]. After enforcing Eqs. (6) and (8) – which yield 𝜆 together with 𝜙★ – the free
parameters of the models

𝛿HI, HI4, HI8 are (𝛿42, 𝑀2), (𝑁, 𝑟42, 𝑀2) and (𝑁, 𝑟24, 𝑀4),

respectively. Recall that we use 𝑁 = 2 exclusively for 𝛿HI. Also, we determine 𝑀2 and 𝑀4

demanding that the GUT scale within MSSM 𝑀GUT ≃ 2/2.433 × 10−2 is identified with the value
of 𝑀𝐵𝐿 – see Table 2 – at the vacuum of Eq. (49), I.e.,

⟨𝑀𝐵𝐿⟩ =
√

2𝑁𝑔⟨𝜙⟩
⟨ 𝑓𝑝⟩

= 𝑀GUT ⇒ ⟨𝜙⟩ ≃ 𝑀GUT

𝑔
√

2𝑁
with 𝑔 ≃ 0.7, ⟨ 𝑓𝑝⟩ ≃ 1 (50)

and ⟨𝜙⟩ given by Eq. (49). By varying the remaining parameters for each model we obtain the
allowed curves in the 𝑛s − 𝑟 plane– see Fig. 2. A comparison with the observational data is also
displayed there. We observe that:

(a) For 𝛿HI – see the solid line in Fig. 2 – we obtain results similar to those obtained for 𝛿CI
in Sec. 3.3. Namely, the resulting 𝑛s and 𝑟 increase with |𝛿42 | with 𝑛s covering the whole allowed
range in Eq. (9). From the considered data we collect the results

2 ≲ −𝛿42/10−5 ≲ 5.5, 2 ≲ 𝑟/10−3 ≲ 3.6 and 4 ≲ Δ★/10−3 ≲ 4.75. (51)

Also we obtain 𝑁★ ≃ (54.8 − 55.7) consistently with Eq. (6) and the resulting 𝑤rh ≃ 0.3 from
Eq. (1.7b). Fixing 𝑛s = 0.965 we find 𝛿42 = −3.6 · 10−5 and 𝑟 = 0.0026 – see the leftmost column
of the Table in Fig. 2. Eq. (50) gives 𝑀2 = 0.00587.
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Model: 𝛿HI HI4 HI8
𝛿42 / 𝑟42 / 𝑟24 −3.6 · 10−5 0.01 10−6

𝑁 2 12 12
𝜙★/0.1 9.9555 9.75 9.877
Δ★(%) 0.445 2.5 1.23
𝜙f/0.1 5.9 3.9 6.5
𝑤rh 0.33 0.266 0.58
𝑁★ 55.2 56.4 58

𝜆/10−5 3.6 8.6 8.5
𝑛s/0.1 9.65 9.64 9.65

−𝛼s/10−4 6.6 6.4 5.98
𝑟/10−2 0.26 1.4 1.3

Figure 2: Allowed curves in the 𝑛s − 𝑟 plane fixing 𝑀𝐵𝐿 = 𝑀GUT for (i) 𝛿HI and various 𝛿42’s indicated
on the solid line or (ii) HI4 and 𝑟42 = 0.01 or HI8 and 𝑟24 = 10−6 and various 𝑁’s indicated on the dashed
and dot-dashed line respectively. The shaded corridors are identified as in Fig. 1. The relevant field values,
parameters and observables corresponding to points shown in the plot are listed in the Table.

(b) For HI4 and HI8, 𝑛s and 𝑟 increase with 𝑁 and Δ★ which is larger than this obtained in
𝛿HI. Namely, 𝑛s approaches its central observational value in Eq. (9) whereas the bound on 𝑟 yields
an upper bound on 𝑁 . More specifically, for HI4 – see dashed line in Fig. 2 – we obtain

0.963 ≲ 𝑛s ≲ 0.964, 0.1 ≲ 𝑁 ≲ 36, 0.09 ≲ Δ★/10−2 ≲ 7.6 and 0.0005 ≲ 𝑟 ≲ 0.039 , (4.52a)

with 𝑤rh ≃ 0.3 and 𝑁★ ≃ 56. Eq. (50) dictates 𝑀2 ≃ (0.0013− 0.0045). On the other hand, for HI8
– see dot-dashed line in Fig. 2 – we obtain

0.963 ≲ 𝑛s ≲ 0.965, 0.1 ≲ 𝑁 ≲ 40, 0.45 ≲ Δ★/10−2 ≲ 3.8 and 0.0001 ≲ 𝑟 ≲ 0.039 , (4.52b)

with 𝑤rh ≃ (0.25 − 0.6) and 𝑁★ ≃ (54.6 − 60). Eq. (50) implies 𝑀4 ≃ (1.1 − 690) · 10−6. In both
equations above the lower bound on 𝑁 is just artificial – as in Eqs. (3.34a) and (3.34b). For 𝑁 = 12,
specific values of parameters and observables are arranged in the rightmost columns of the Table
in Fig. 2. Although HI8 is worse than HI4 regarding the tuning of 𝑀4 and 𝑟24, it leads to 𝑛s values
precisely equal to its central observational one – cf. Eq. (9).

5. Conclusions

We reviewed the implementation of PI first in a non-SUSY and then to a SUSY framework. In
the former regime, we confined ourselves to models displaying a kinetic mixing in the inflaton sector
with a pole of order one or two and verified their agreement with observations. In the latter regime,
we presented two classes of models (CI and HI) depending on whether the inflaton is included into
a gauge singlet or non-singlet field. CI and HI are relied on the superpotential in Eqs. (24) and
(35) respectively which respects an 𝑅 symmetry and include an inflaton accompanying field which
facilitates the establishment of PI. In each class of models we singled out three subclasses of models
(𝛿CI, CI2 and CI4) and (𝛿HI, HI4 and HI8). The models 𝛿CI and 𝛿HI are based on Kähler potentials in
Eqs. (3.26a) and (4.37a) whereas (CI2, CI4) and (HI4, HI8) in those shown in Eqs. (27) and (38). All
those Kähler potentials parameterize hyperbolic internal geometries with a kinetic pole of order one
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for CI and two for HI. The Higgflaton in the last case implements the breaking of a gauge𝑈 (1)𝐵−𝐿
symmetry at a scale which may assume a value compatible with the MSSM unification.

All the models excellently match the observations by restricting the free parameters to reason-
ably ample regions of values. In particular, within 𝛿CI and 𝛿HI any observationally acceptable 𝑛s is
attainable by tuning 𝛿21 and 𝛿42 respectively to values of the order 10−5, whereas 𝑟 is kept at the
level of 10−3 – see Eqs. (33) and (51). On the other hand, CI2, CI4, HI4 and HI8 avoid any tuning,
larger 𝑟’s are achievable as 𝑁 increases beyond 2, while 𝑛s lies close to its central observational
value – see Eqs. (3.34a) and (3.34b) for CI and Eqs. (4.52a) and (4.52b) for HI.
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