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Left-Right parity symmetry P can arise from a unified gauge symmetry, involving gravitational
interactions. Parity can survive to the symmetry breaking of the gauge group at Planck scale and
can be spontaneously broken at lower energies, as in Left-Right symmetric models with P.
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Parity from SO(7, 1) and SO(7, 7) gauge symmetries Fabrizio Nesti

Weak interactions differ from the other known forces in Nature for their chiral asymmetry: parity is
maximally broken. This special feature has led many authors to the hypothesis that at high energy
scale one may recover a generalized parity P, which combines standard parity and Left-Right
gauge group exchange. This new discrete symmetry can be naturally embedded in the Left-Right
symmetric models (LRSM) [1–5], based on the gauge group SU𝐿 (2) × SU𝑅 (2) × U𝐵−𝐿 (1). It
must be broken at lower scale and, precisely, it can be spontaneously broken simultaneously to the
SU𝑅 (2) gauge symmetry. The generalized parity P has been known for a long time to have neither
a UV completion nor a protection mechanism against higher energy physics (i.e. gravity.) This has
motivated the proposal in [6].

The basic idea is to understand P as a discrete remnant of a continuous, gauge symmetry.
The main obstacle to building this gauge symmetry is the non-commutation between the Lorentz
symmetry and a continuous rotation changing the chiralities. An attractive solution to this issue is
to mix chiral rotation and Lorenz group in a larger, internal gauge symmetry. Involving Lorentz
symmetry necessary implies bringing in the game gravity, thus the internal gauge symmetry has to
be broken at Planck scale. The underlying frameworks to model this proposal are usually known
as gravi-weak and gravi-GUT scenarios [7–11]. The former unifies gravity with weak interactions,
the latter represents a complete unification with gravity.

In particular, we showed in [6] that P can be seen as a discrete remnant of 𝑆𝑂 (1, 7) (gravi-weak
unification) or 𝑆𝑂 (7, 7) (gravi-GUT) gauge symmetries. The framework requires to split P as the
action on fields 𝑃 and space inversion 𝐼𝑠:

P = 𝐼𝑠 ◦ 𝑃 , (1)
where only 𝑃, which exchanges left and right fields, becomes part of a unifying gauge symmetry.

In this proceeding, we highlight our findings.

1. SO(1,7) case

Let us consider the Majorana real representation 16 of SO(1, 7) → SO(1, 3) × SO(0, 4), where
SO(1, 3) is the Lorentz group. We denote with 𝐿, 𝑅 (𝑙, 𝑟) the left or right 𝑆𝑈 (2) components of
SO(0, 4) (SO(1, 3)). The fermions transform as doublets under both SU(2)𝐿,𝑅 and Lorentz,

16R ≡ 8𝑠 → (2𝐿 , 1𝑅, 2𝑙) ⊕ (1𝐿 , 2𝑅, 2𝑟 ) . (2)

The SO(1, 7) generators acting on 8𝑠 are:

Σ𝑀,𝑁 =
𝑖

2
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0 𝑖𝜎𝑖 ⊗ 1 ⊗𝜎3 𝑖1 ⊗ 1 ⊗𝜎2 𝑖1 ⊗𝜎𝑏 ⊗𝜎1

−𝑖𝜎𝑗 ⊗ 1 ⊗𝜎3 𝜖𝑖 𝑗𝑘𝜎𝑘 ⊗ 1 ⊗ 1 −𝜎𝑗 ⊗ 1 ⊗𝜎1 𝜎𝑏 ⊗𝜎𝑗 ⊗𝜎2

−𝑖1 ⊗ 1 ⊗𝜎2 𝜎𝑖 ⊗ 1 ⊗𝜎1 0 −1 ⊗𝜎𝑏 ⊗𝜎3

−𝑖𝜎𝑏 ⊗ 1 ⊗𝜎1 −𝜎𝑖 ⊗𝜎𝑏 ⊗𝜎2 1 ⊗𝜎𝑎 ⊗𝜎3 𝜖𝑎𝑏𝑐1 ⊗𝜎𝑐 ⊗ 1

ª®®®®®®®®¬
The upper-left block represents the SO(1, 3) generators and the lower-right the SO(4) ones. In the
respective spaces, we denote 𝑖, 𝑗 or 𝑎, 𝑏 as indices from 1 to 3, thus matching 𝑀, 𝑁 = 1, 2, 3 →
𝑖, 𝑗 = 1, 2, 3 and 𝑀, 𝑁 = 5, 6, 7 → 𝑎, 𝑏 = 1, 2, 3.

The three generators in the box 123-4, namely 𝑅𝑖 ∼ 𝜎𝑖 ⊗ 1 ⊗𝜎1, rotate among them one space
direction with the timelike direction of SO(4). On the othert hand, one finds just above the standard
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rotations 𝐿𝑖 ∼ 𝜎𝑖 ⊗ 1 ⊗ 1. The point now is that for any 𝑖, the combination 𝑅𝑖 − 𝐿𝑖 generates a
continuous rotation subgroup, U(1)𝑃, and one can check that a rotation by 𝜋 generates

𝑃 = 1 ⊗ 1 ⊗𝜎1 . (3)

This rotation by 𝜋 results in the inversion of all space directions, implementing parity, in addition
to the timelike direction of SO(4). On the spinors, under the action of 𝑃, the swapping of left and
right chirality is accompanied by the swapping of the Left and Right weak groups, as required.

2. Symmetric phase and breaking

A mechanism of symmetry breaking which preserves parity as a discrete remnant of the original
continuous gauge group can be found within the extension of the first-order approach to gravity
where the Lorentz symmetry is disentangled from spacetime transformations (diffeomorphisms)
and treated as an internal gauge symmetry, further extended to include other interactions [8–10, 12].

For the group 𝐺 = SO(1, 3 + 𝑁), preserving the metric 𝜂𝑀𝑁 = diag {1,−1, −1,−1,−1 . . .}
with 𝑀 = 0, . . . 𝑁 + 3, a vierbein VEV, solution of the equations of motion, can be arranged in the
first four directions,

𝑒𝑀𝜇 =

{
𝑀𝑝𝑙 𝛿

𝑀
𝜇 , for 0 ≤ 𝑀 ≤ 3

0 , for 4 ≤ 𝑀 ≤ 𝑁 + 3
. (4)

This breaks diffs and the 4D part of 𝐺 down to global simultaneous Lorentz transformations of 𝜇
and the first four indices 𝑀 , and it leaves unbroken a local subgroup SO(𝑁), mixing the last 𝑁
directions where the VEV vanishes.

This mechanism was used in [9], with SO(11, 3) broken in this single step to a SO(10) GUT.
As analyzed there, the correct fermionic, gauge and gravitational lagrangians emerge after the
symmetry breaking of the 𝐺-invariant unified theory. This VEV breaks 𝑈 (1)𝑃 and accordingly,
also 𝑃, under which we have 𝑒𝑀𝜇 → 𝑒𝑀𝜇 𝜂𝑀𝑀 (no summation). Thus also 𝑃 is broken, as it does
not preserve 𝑒𝑀𝜇 .

On the other hand, the VEV is restored by adding a 𝐼𝑠 spatial inversion, which completes the
action of P:

P : 𝑒𝑀𝜇 → 𝜂𝜇𝜇𝑒
𝑀
𝜇 𝜂𝑀𝑀 = 𝑒𝑀𝜇 , (5)

i.e. the vierbein VEV is invariant under combined internal parity and spatial inversion, P =

𝐼𝑠 ◦ 𝑃. This result shows that the breaking mechanism glues not only the gauge and diff Lorentz
transformations but also glues internal parity with spatial inversion, to produce the standard behavior
of parity in the low energy field theory.

Thus, if the Lagrangian is invariant under space inversion, then the low energy theory will be
exactly P invariant.

3. Emergence of LRSM Yukawa terms

Accordingly, a SO(1, 7) Yukawa term is explicitly matched with the LRSM P-invariant lagrangian
at low energies,

L𝑌𝑢𝑘 = 𝑌𝐻Ψ†𝐻Ψ + ℎ.𝑐. → 𝜓𝐿

[
𝑌Φ + 𝑌Φ̃

]
𝜓𝑅 + ℎ.𝑐. . (6)
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p+q = 8 spinor = 16R (Majorana)

SO(1, 7) SO(1, 3) ⊗ SO(0, 4) P
SO(5, 3) SO(4, 0) ⊗ SO(1, 3) T
p+q = 14 spinor = 64R (Majorana-Weyl)

SO(7, 7) SO(6, 0) ⊗ SO(1, 3) ⊗ SO(0, 4) T𝑐𝑜𝑙 , P
SO(11, 3) SO(10, 0) ⊗ SO(1, 3) C T𝑠𝑜10

Table 1: Breaking of unifying orthogonal groups and emerging discrete symmetries.

where 𝑌𝐻 = 𝑌 + 𝑖𝑌 is a generic complex Yukawa matrix, 𝐻 ∈ 8𝑐8†𝑐 , Φ is the LRSM bidoublet, and
where under the breaking SO(1, 7) → SU(2)𝐿 × SU(2)𝑅 × SO(1, 3), the field 𝐻 decomposes as

𝐻 = 𝐿𝜇 (1𝐿 , 1𝑅, 4𝑙) +𝐿𝑎
𝜇 (3𝐿 , 1𝑅, 4𝑙) +𝐿𝑖

(
2∗𝐿 , 2𝑅, 3𝑙𝑟

)
+Φ

𝐿𝑅

(
2∗𝐿 , 2𝑅, 1𝑙𝑟

)
+(𝐿↔𝑅) .

Thus 𝐻 contains Lorentz 4-vector, 3-vector, and singlet representations transforming under the
weak groups. The field Φ is a suitable combination of Φ

𝐿𝑅
and Φ

†
𝑅𝐿

, which has to remain light to
make contact with the LRSM.

The other bidoublet has a natural mass at the Planck breaking scale, disappearing from the
low energy spectrum. Incidentally, the same fate has to be assumed for all the other components
transforming nontrivially under Lorentz, also avoiding possible issues with the signature of their
nonstandard kinetic terms.

Complete modeling should pay attention to the norm positivity of states surviving below the
Planck scale. In the unbroken phase above the Planck scale instead, there is no background metric
and thus no standard quadratic kinetic terms exist. This phase thus belongs arguably to a topological
nonperturbative regime of quantum gravity.

4. Complete unifications and other symmetries

Larger groups can be proposed to include both weak and strong interactions, see Table 1 for the
realistic pseudo-orthogonal cases.

The various components can be arranged with spatial and/or timelike signature, and the rotations
exploited above to generate P give rise to possible new symmetries.

For instance for SO(5, 3), one can rotate one of the SO(4) directions with internal direction 0
to obtain its inversion, and the VEV may be preserved by adding a time inversion 𝐼𝑡 . We indicate
the symmetry as T in the table, amounting to time-reversal plus exchange of the Left and Right
weak groups.

In the SO(7, 7) case, SO(4) is spatial and leads to P, while SO(6) is time-like. Thus, one finds
a time-reversal plus SU(4) color conjugation, T𝑐𝑜𝑙 in the table. This additional discrete symmetry
may or may not survive the lower stages of symmetry breaking.

For SO(11, 3) we find an analogous symmetry, T𝑠𝑜10, while P is absent. In the table, it is
shown also the standard C LR-symmetry, charge conjugation plus exchange of Left and Right weak
groups, which is part of SO(10).
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5. Discussion

We established that P arises from the gluing of internal parity 𝑃 and spatial inversion 𝐼𝑠. While
𝑃 is gauged, spatial inversion need not be assumed to be an invariance of the theory. This is still
compatible with diffeomorphisms and the weak equivalence principle in General Relativity.

If 𝐼𝑠 is assumed, the theory would have no P violating terms. In particular, 𝜃𝐹�̃� is forbidden,
so this choice can be viewed as a solution to the Strong CP problem, as in [1, 5, 13].

In case 𝐼𝑠 is not assumed to be exact, 𝜃𝐹𝑀
𝑁

∧ 𝐹𝑁
𝑀

is admitted (the two-form 𝐹𝑀
𝑁

being the
curvature of 𝜔𝑀

𝑁
) This term violates space inversion but respects internal parity 𝑃 being gauge-

invariant. In the low-energy theory, it generates the term 𝜃𝐹�̃�, as well as the gravitational 𝜃�̃�𝑅, both
P violating. Another example breaking spatial parity but not the gauge symmetry is the Immirzi
term 𝛼𝑅𝑀𝑁 ∧ 𝑒𝑀 ∧ 𝑒𝑁 .

The two scenarios shall be disentangled. One of the most stringent tests is the experimental
bound from the electric dipole moments (EDM) (e.g. of the neutron [14]). The relative bounds of
the order 𝜃 < 10−10 directly translate for us into limits on the gravitational analogous, 𝜃�̃�𝑅. This
is argued to be physical [15], and the question of how it could be measured is the subject of some
recent studies, e.g. [16–18].

In the LRSM, exact parity P, along with flavor constraints [19–23], imposes that the QCD 𝜃 is
strictly zero, so that the neutron EDM is computable and pushes the Left-Right scale 𝑀𝑊𝑅

beyond
∼ 28 TeV [23, 24]. The present framework instead motivates also the situation as in Ref. [19, 23],
namely, only 𝜃 is free. In this case, P symmetry is valid in the Yukawa sector, but strong CP poses
no additional constraints, in complete analogy with the case of C symmetry [19]. In this scenario,
the 𝑊𝑅 scale can be lowered to ∼ 6 TeV, at the reach of future LHC runs and next-generation
colliders [25], helping to clarify the underlying mechanism behind P.

Acknowledgements. The work of F.N. was partially supported by the research grant No. 2017X7X85K
under the program PRIN 2017 funded by the Ministero dell’Istruzione, Università e della Ricerca.
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