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We discuss a minimal extension of the Standard Model (SM) where a single real scalar field serves
as both inflaton and dark matter. The corresponding Lagrangian contains the renormalizable
interactions of the inflaton field. Quantum effects generally induce a non–minimal coupling to
gravity which facilitates inflation consistent with the PLANCK constraints. A large fraction of
the inflaton quanta produced after inflation must be converted into the SM radiation reheating
the Universe and the rest remains dark matter today. We consider thermal and non–thermal
production of inflaton dark matter. In the non–thermal case, we take into account collective effects
with the help of lattice simulations. Combining analytic and numerical results with the unitarity
consideration, we find that the inflaton dark matter model is viable only in the thermal case where
the inflaton mass is near half the Higgs mass.

7th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2020-2021)
29th November - 3rd December 2021
Bergen, Norway

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:jong-hyun.yoon@helsinki.fi
https://pos.sissa.it/


P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
0
-
2
0
2
1
)
0
2
8

Inflaton Dark Matter Jong-Hyun Yoon

1. Introduction

Dark matter (DM) is one of the deepest mysteries in the history of physics, yet no convincing
signatures of dark matter have been detected. Motivated by the inflationary Big Bang cosmology,
onemay consider an economical possibility that a single scalar field plays the role of both the inflaton
field and dark matter [1]. Non–minimal couplings to gravity induced by the quantum effects [2]
may be used to fit the inflationary dynamics while the renormalizable interactions with the Higgs
explain the reheating of the Universe. The simplest thermal DM model based on a non–minimal
scalar coupling to curvature was studied in [3]. The non–thermal case often requires one to perform
lattice simulations [4–8]. Taking into account the unitarity of the system, we discuss the viability
of the inflaton dark matter model and find the allowed parameter space [9].

2. Singlet–driven inflation

Let us study general renormalizable interactions of the real singlet scalar inflaton field φ and
the Higgs field H [10, 11]

LJ =
√
−ĝ

(
−

1
2
ΩR̂ +

1
2
∂µφ∂

µφ + (DµH)†DµH − V(φ,H)
)
, (1)

where ĝµν is the Jordan frame metric and R̂ is the corresponding scalar curvature. In the unitary
gauge,

H(x) =
1
√

2

(
0

h(x)

)
, (2)

the Z2–symmetric potential has been assumed to stabilize φ

V(φ, h) =
1
4
λhh4 +

1
4
λφhh2φ2 +

1
4
λφφ

4 +
1
2

m2
hh2 +

1
2

m2
φφ

2 . (3)

In Planck units (MPl = 1), the function Ω at the lowest order of non–minimal scalar–gravity
couplings is given by

Ω = 1 + ξhh2 + ξφφ
2 . (4)

The non–minimal coupling to gravity term can be eliminated by a conformal transformation gµν =

Ω ĝµν from the Jordan frame to the Einstein Frame. The Einstein frame Lagrangian reads

L =
3
4

(
∂µ ln(ξhh2 + ξφφ

2)
)2
+

1
2

1
ξhh2 + ξφφ2

(
(∂µh)2 + (∂µφ)2

)
−

V
(ξhh2 + ξφφ2)2

. (5)

Introducing the variables and normalizing them canonically

χ =

√
3
2

ln(ξhh2 + ξφφ
2) , τ =

h
φ
, χ′ = χ

√
1 +

1
6ξφ

, τ′ =
τ√
ξφ

, (6)

one may obtain the potential of the new inflaton field χ′

VE =
λφ

4ξ2
φ

(
1 + exp

(
−

2γ χ′
√

6

))−2
, (7)
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where γ =
√

6ξφ
6ξφ+1 . The slow roll parameters are expressed in terms of the new inflaton field χ′,

ε =
1
2

(
∂VE/∂ χ

′

VE

)2
, η =

∂2VE/∂ χ
′2

VE
. (8)

Since inflation ends when ε ' 1, it determines χ′end. The number of e–folds is given by

N =
∫ end

in
H dt = −

∫ end

in

VE

∂VE/∂ χ′
dχ′ . (9)

That is, a fixed N determines the initial χ′in. The COBE constraint on inflationary perturbations
requires VE/ε ' 0.0274 at χ′in. Therefore, one finds

λφ

4ξ2
φ

= 4 × 10−7 1
γ2N2 . (10)

The spectral index n and the tensor to scalar ratio r are

n = 1 − 6ε + 2η ' 1 −
2
N
−

9
2γ2N2 , r = 16ε '

12
γ2N2 . (11)

Our set–up γ ∼ 1 fits well the PLANCK observation (n ∼ 1 and r � 1) for N = 50 to 60 [12].
Since a non–minimal coupling term corresponds to a non–renormalizable dim–5 operator, the

system is meaningful up to a cutoff scale, Λ ∼ 1/ξφ. That is, the inflationary scale (λφ/4ξ2
φ)

1/4

must be below the cutoff. Combined with (10), this requires at the inflationary scale

λφ(H) < 4 × 10−5 (12)

and ξφ(H) < 300, where we have set γ ∼ 1 for large ξφ.
Our generalized framework allows one to reproduce the Higgs inflation model, where ξh must

be large such that the corresponding γ ∼ 1 [13]. However, low ξ is also possible in the present model
and it may lead to small deviations in the inflationary prediction (11). The cutoff scale Λ depends
on the inflaton background value and therefore the Higgs inflation model survives the unitarity
constraint during inflation [14]. At the end of inflation and the beginning of reheating, however, this
background becomes less important, so the unitarity issue remains in the Higgs inflation model.

3. Non–thermal inflaton dark matter and reheating

Since the inflaton amplitude decreases such that ξφφ2, ξ2
φφ

2 < 1 after inflation, one finds

χ ' φ , VE (φ) '
1
4
λφ φ

4 . (13)

Therefore, the equation of motion (EOM) for the inflaton background field is

Üφ + 3H Ûφ + λφ φ3 = 0 . (14)

After a few oscillations, the solution is approximated by a Jacobi cosine function,

φ(t) =
Φ0
a(t)

cn
(
x,

1
√

2

)
, (15)
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Figure 1: Left: Instability bands of the Lamé equation with q = λφh/(2λφ). The Floquet exponent is
constant along the contours and the innermost corresponds to the strongest resonance. Right: Decay of the
classical inflaton background 〈ϕ〉 in the comoving frame (ϕ = a φ) due to rescattering of the inflaton quanta.
The conformal time z is defined by dz =

√
λφ Φ0 dt/a(t); λφ = 10−13 and Φ0 = 1.7 in Planck units. The

amplitude is normalized to 1 at the initial point.

where Φ0 is the initial amplitude of the inflaton background field and x = (48λφ)1/4
√

t is the
conformal time. The EOM for the Higgs in momentum space takes the form of the Lamé equation,

X ′′k +
[
κ2 +

λφh

2λφ
cn2

(
x,

1
√

2

)]
Xk = 0 , (16)

where Xk(t) ≡ a(t)hk(t), κ2 ≡ k2/(λφΦ
2
0), and the prime denotes differentiation with respect to x.

The ratio q = λφh/(2λφ) determines the behavior of the solution. Themomentummodes inside
instable regions shown in Fig. 1 have exponential increase in Xk . The exponential growth due to
the parameteric band structure of the Lamé equation is called parameteric resonance. Namely, it
leads to resonance particle production since the occupation number gets amplified accordingly

nk =
ωk

2

(
|X ′

k
|2

ω2
k

+ |Xk |
2

)
−

1
2
, (17)

where the prime represents the conformal time derivative a(d/dt) andω2
k
= k2+

λφh

2 Φ
2
0 cn2

(
x, 1√

2

)
.

However, the linear analysis above breaks down when the interaction term neglected in (14)
becomes significant and thereby invalidates (15) and (16). Besides such a backreaction effect, the
generated particle can also rescatter the inflaton backgroundfield. Even in the absence of interactions
with other fields, self–interaction of the inflaton fragments the homogeneous background field by
rescattering, as illustrated in Fig. 1. To take into account the non–linear and non–perturbative
effects, one has to resort to lattice simulations. We have obtained the results with LATTICEEASY
[15].

Motivated by the simulation results presented in Fig. 2, we expect the Higgs field to attain the
quasi–equilibrium with the SM fields, where the energy is distributed almost democratically among
the SM relativistic degrees of freedom,

ρφ

ρtot
∼

1
# d.o.f.

(18)
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Figure 2: The energy fraction of 4 Higgs d.o.f. and the inflaton as a function of the conformal time z,
dz =

√
λφ Φ0 dt/a(t) and Φ0 = 1.7 in Planck units.

When the preheating stage is over, the total number of the inflaton dark matter quanta remains
approximately constant. This allows us to set the lower bound on the dark matter abundance Y ,
which is also invariant from this point. The relic abundanceY is defined by nφ/sSM, where nφ is the
inflaton number density and sSM is the entropy density of the SM fields. sSM is close to the number
density of the SM quanta nSM, up to a factor of a few. For 107 SM d.o.f. at high temperature, we
find

ρφ

ρtot
∼

nφ
nSM
∼

Y
(nSM/sSM)

&
1

107
, (19)

Y & 10−3 . (20)

This number is far above the observed DM abundance Yobs = 4.4 × 10−10 GeV/mφ for mφ & 10
keV required by the structure formation constraints. Therefore, the resulting Universe is too dark.

4. Thermal inflaton dark matter

If λφh is sufficiently large, the system may reach thermal equilibrium via processes like
φh → φh, φφ → hh, etc. Let us consider constraints away from the narrow resonance region
mφ ' 62 GeV for efficient DM annihilation φφ→ SM combined with the XENON1T bound [16].
Then, one reads off

λφh(1 TeV) & 0.25 . (21)

This bound applies at the TeV scale. The renormalization group running generates the inflaton
self–coupling at least of the size λ2

φh
/(8π2) (ignoring a large log),

λφ(H) & 10−3 . (22)

Clearly, the generated coupling λφ is inconsistent with the unitarity bound (12).
One may evade the above conclusion by assuming the Higgs resonance,

mφ ' mh0/2 , (23)

where mh0 = 125 GeV is the physical Higgs mass. In this case, resonant DM annihilation φφ →
h → SM is efficient even for small couplings λφh & 10−4 [16]. The correction to the inflaton
self–coupling is insignificant and all of the constraints can be avoided. We note however that
|mφ − mh/2| must be below a few GeV, which is not impossible yet rather unnatural.
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5. Conclusion

The inflaton dark matter model is an economical and intriguing possibility that a single scalar
field is responsible for both inflation and dark matter. Based on minimalism, we have examined
thermal and non–thermal production of the inflaton dark matter quanta. It is important to take into
account non–linear and non–perturbative effects in analyzing non–thermal production of particles
during preheating, for which we have performed lattice simulations. We find that at weak couplings
only a small fraction of the inflaton energy is converted into the SMradiation, while at large couplings
the system reaches quasi–equilibrium. In both cases, dark matter is overabundant. Thermal inflaton
dark matter is viable but only within the narrow range of the inflaton mass, such that the inflaton
quanta annihilate through the Higgs resonance. The conclusion of the inflaton dark matter model
may change in less minimalistic set–ups.
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