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We discuss the effect of environmental decoherence on matter-effective neutrino oscillation prob-
abilities. Decoherence is a phenomenon observed in systems interacting with the environment.
We treat the neutrinos as an open quantum system and by using the Lindblad Master equation
we study the evolution of neutrino states. The matter effect is incorporated for neutrinos passing
through matter with the help of the Cayley-Hamilton formalism.
In this work, we have developed a general algorithm that attempts to solve the Lindblad Master
Equation to compute the neutrino oscillation probabilities in presence of environmental decoher-
ence. We extensively validate the algorithm and explore how environmentally induced decoherence
can potentially affect the oscillation probabilities, particularly in the long-baseline sector.
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1. Introduction

Neutrinos are particles which interacts weakly with matter. They come in three distinct flavors
i.e. electron 𝜈𝑒, muon 𝜈𝜇 and tao 𝜈𝜏 . These neutrinos change from one flavor to another as they
travel through a distance and this phenomenon is known as Neutrino oscillation. The formalism to
study the oscillation of neutrinos in vacuum and matter is well developed. Each neutrino flavor can
be expressed as a superposition of three mass eigenstates with masses 𝑚1, 𝑚2 and 𝑚3. It can be
written as, ��𝜈 𝑓

〉
= Σ𝑖 |𝜈𝑖⟩ (1)

In nature, no system is completely isolated. Generally, the studies conducted on neutrino
oscillations treat neutrinos as a closed system. But even the weakly interacting neutrinos cannot
be treated as an isolated system. Only in an ideal case can we neglect the potential coupling of
neutrinos with the environment. Thus, in our work we treat neutrinos as an open quantum system
[4].

There exists a possibility that the propagating neutrinos may undergo some dissipative interac-
tions with the environment. This will lead to a loss of coherence between different neutrino mass
eigenstates. Such interactions can also introduce damping factors in the oscillation probabilities.

In this work, we study how appearance and disappearance probabilities get affected due to the
presence of decoherence in the long-baseline sector.

2. Standard formalism for neutrino oscillation

The PMNS mixing matrix which describes the mixing between different mass eigenstates is
given by

𝑈𝑃𝑀𝑁𝑆 = 𝑈 =
©«
𝑈𝑒1 𝑈𝑒2 𝑈𝑒3

𝑈𝜇1 𝑈𝜇2 𝑈𝜇3

𝑈𝜏1 𝑈𝜏2 𝑈𝜏3

ª®®¬ (2)

The Hamiltonian in mass basis for neutrinos in vacuum is given by

𝐻𝑣𝑎𝑐𝑢𝑢𝑚 =
©«
𝐸1 0 0
0 𝐸2 0
0 0 𝐸3

ª®®¬ (3)

The Hamiltonian for neutrinos propagating through matter in mass basis can be written as

𝐻𝑚𝑎𝑡𝑡𝑒𝑟 = 𝐻𝑉𝑎𝑐𝑢𝑢𝑚 +𝑉𝑚𝑎𝑡𝑡𝑒𝑟 = 𝐻𝑉𝑎𝑐𝑢𝑢𝑚 +𝑈−1𝑉 𝑓 𝑙𝑎𝑣𝑜𝑟𝑈 (4)

where, 𝑉 𝑓 𝑙𝑎𝑣𝑜𝑟 represents the matter potential and 𝐴 = ±
√

2𝐺 𝑓 𝑛𝑒, +(−) is for neutrinos (anti-
neutrinos). The symbol 𝐺 𝑓 represents Fermi’s coupling constant and 𝑛𝑒 is electron density in
matter.

𝑉 𝑓 𝑙𝑎𝑣𝑜𝑟 =
©«
𝐴 0 0
0 0 0
0 0 0

ª®®¬ (5)
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We use the Cayley-Hamilton formalism to obtain a relation between the mixing matrix in mass
basis with matter effective basis [9].

We incorporate the above equations in the density matrix formalism along with the Lindblad
Master equation to study the oscillation behaviour of the neutrinos with decoherence in-play.

3. Phenomenological model

The density matrix formalism is a different approach to describing a quantum state. It is most
useful for time-dependent problems and also very handy for describing an open quantum system.
The density matrix for neutrinos can be defined as

𝜌𝜈 =
∑︁
𝑖

𝜌𝑖 𝑗 |𝜈𝑖⟩
〈
𝜈 𝑗

�� (6)

where |𝜈𝑖⟩ represents the mass eigenstates of neutrinos.
The diagonal elements of the density matrix give information about the probability of obtaining

a specific quantum state, whereas the non-diagonal matrix elements explain the evolution of coher-
ence between different quantum states. The time evolution of the density matrix can be studied by
the well-known Liouville-Von Neumann equation, given by

𝑑

𝑑𝑡
𝜌𝜈 (𝑡) = −𝑖[𝐻, 𝜌𝜈 (𝑡)] (7)

In our study, we model propagating neutrinos as an open quantum system and use the well-developed
formalism of the density matrix [1]. We can use equation (7) to study the time evolution of neutrinos,
in the absence of any dissipative effects.
Now to incorporate the effects of decoherence into the neutrino system, we use the Lindblad
Master equation which allows for an additional term 𝐷 [𝜌𝜈 (𝑡)] .

𝑑

𝑑𝑡
𝜌𝜈 (𝑡) = −𝑖[𝐻, 𝜌𝜈 (𝑡)] − 𝐷 [𝜌𝜈 (𝑡)] (8)

The term 𝐷 [𝜌𝜈 (𝑡)] in the above equation is known as ’Dissipator term’ which takes into account
the dissipative interaction of the neutrinos with the environment. The dissipator term in equation
(8) appears in the form given below.

𝐷 [𝜌𝜈 (𝑡)] =
∑︁
𝑛

[{𝜌𝜈 (𝑡), 𝐷+
𝑛𝐷𝑛} − 2𝐷𝑛𝜌𝜈 (𝑡)𝐷+

𝑛] (9)

Here, 𝑛 = 𝑁2 − 1 and 𝑁 is the number of neutrinos or the dimensions of the density matrix.
The dissipator term can be reduced to a matrix of simpler form by imposing some constraints

on 𝐷𝑛, one of which is the increase of entropy with time and the other is the conservation of average
energy of the system [2]. This reduces equation (9) to a form given by

𝐷 [𝜌𝜈 (𝑡)] =
©«

0 𝛤21𝜌12(𝑡) 𝛤31𝜌13(𝑡)
𝛤21𝜌21(𝑡) 0 𝛤32𝜌23(𝑡)
𝛤31𝜌31(𝑡) 𝛤32𝜌32(𝑡) 0

ª®®¬ (10)
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where 𝛤 is the decoherence coupling parameter.
To draw a similarity between the range of mass-squared splittings and the decoherence parameters,
we use the approximation, Γ12 = 0 and Γ32 ≈ Γ31 = Γ.
The general probability equation calculated from the density matrix is given by

𝑃(𝜈𝑖 → 𝜈 𝑓 ) = 𝑇𝑟
[
𝛼 𝑓 𝜌𝑖 (𝑡)

]
(11)

where, 𝛼 𝑓 represents the final flavor state and 𝜌𝑖 (𝑡) represents the time evolved density matrix for
the initial state 𝑖.
The appearance and disappearance probability expression for 𝜈𝜇 is calculated to be,

𝑃𝜇𝜇 = 1 − 2
3∑︁

𝑖> 𝑗

���𝑈 ′
𝜇𝑖

���2 ���𝑈 ′
𝜇 𝑗

���2 [
1 − 𝑒−Γ𝐿𝑐𝑜𝑠

(
Δ𝑚′2

𝑖 𝑗
𝐿

2𝐸

)]
(12)

𝑃𝜇𝑒 =

3∑︁
𝑖= 𝑗

��𝑈 ′
𝑒𝑖

��2 ���𝑈 ′
𝜇 𝑗

���2 + 2
3∑︁

𝑖> 𝑗

𝑈 ′∗
𝑒𝑖𝑈

′
𝑒 𝑗𝑈

′
𝜇𝑖𝑈

′∗
𝜇 𝑗𝑒

−Γ𝐿𝑐𝑜𝑠

(
Δ𝑚′2

𝑖 𝑗
𝐿

2𝐸

)
(13)

4. Results and conclusion

Using the survival and appearance probability expressions shown above, we plot for three
different baselines i.e. 295𝑘𝑚 for T2K, 810𝑘𝑚 for No𝜈A and 1300𝑘𝑚 for DUNE. The dotted line
represents the curve with only matter effects and the solid line represents the curve with both matter
effects and decoherence, 𝛤 = 2.3 ∗ 10−23𝐺𝑒𝑉 .

(a) Plot of Survival probability, 𝑃𝜇𝜇 (b) Plot of Appearance probability, 𝑃𝜇𝑒

Figure 1: Plots of neutrino oscillation probabilities

In Fig 1(a), we observe the effects of decoherence to increase with the increase in baseline. At
minima, we have non-zero values and the value appears to increase with baseline. We can also
observe in Fig 1(b) that the suppression of probability peaks is higher for longer baselines.
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