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Machine learning enjoys widespread success in High Energy Physics (HEP) analyses at LHC.
However the ambitious HL-LHC program will require much more computing resources in
the next two decades. Quantum computing may offer speed-up for HEP physics analyses at
HL-LHC, and can be a new computational paradigm for big data analyses in High Energy Physics.

We have successfully employed three methods (1) Variational Quantum Classifier (VQC) method,
(2) Quantum Support Vector Machine Kernel (QSVM-kernel) method and (3) Quantum Neural
Network (QNN) method for two LHC flagship analyses: ttH (Higgs production in association
with two top quarks) and H->mumu (Higgs decay to two muons, the second generation fermions).
We shall address the progressive improvements in performance from method (1) to method (3).

We will present our experiences and results of a study on LHC High Energy Physics data analyses
with IBM Quantum Simulator and Quantum Hardware (using IBM Qiskit framework), Google
Quantum Simulator (using Google Cirq framework), and Amazon Quantum Simulator (using
Amazon Braket cloud service). The work is in the context of a Qubit platform (a gate-model
quantum computer). Taking into account the present limitation of hardware access, different
quantum machine learning methods are studied on simulators and the results are compared with
classical machine learning methods (BDT, classical Support Vector Machine and classical Neural
Network). Furthermore, we do apply quantum machine learning on IBM quantum hardware to
compare performance between quantum simulator and quantum hardware.

The work is performed by an international and interdisciplinary collaboration with the Depart-
ment of Physics and Department of Computer Sciences of University of Wisconsin, CERN
Quantum Technology Initiative, IBM Research Zurich, IBM T.J. Watson Research Center,
Fermilab Quantum Institute, BNL Computational Science Initiative, State University of New
York at Stony Brook, and Quantum Computing and Al Research of Amazon Web Services. This
work pioneers a close collaboration of academic institutions with industrial corporations in the
High Energy Physics analyses effort.

Though the size of event samples in future HL-LHC physics and the limited number of qubits
pose some challenges to the Quantum Machine learning studies for High Energy Physics, more
advanced quantum computers with larger number of qubits, reduced noise and improved running
time (as envisioned by IBM and Google) may outperform classical machine learning in both
classification power and in speed.

Although the era of efficient quantum computing may still be years away, we have made promis-
ing progress and obtained preliminary results in applying quantum machine learning to High
Energy Physics.
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1. Introduction

The experimental programs of the LHC revolve around the discovery of new physics, which
requires the use of machine learning algorithms for the identification of rare signals against im-
mense backgrounds. The ambitious High Luminosity upgrade of the LHC (HL-LHC) will require
an enormous amount of computing resources within the next two decades and beyond, and new
technologies are being sought after to replace the present computing infrastructure. We aim to
demonstrate as a proof of principle that quantum computing can be the new paradigm for HEP data
analysis. Some authors of this paper belong to one of the LHC groups which have pioneered the
use of classical machine learning in prominent physics analysis, two of which are ttH (H — yy)
and H — putu~ . Three quantum machine learning methods, the variational quantum classifier,
the quantum support vector machine kernel, and the quantum neural network, are investigated and
compared to classical methods when applied to these two analyses.

2. Two recent LHC flagship physics analyses

The observation of (#H production (Higgs boson production in association with a top quark
pair) in 2018 by the ATLAS and CMS experiments [1, 2] was a significant milestone for the un-
derstanding of fundamental particles and interactions, as it confirmed the interactions between the
Higgs boson and the top quark, the heaviest known fundamental particle. As tfH accounts for only
about 1% of the total Higgs boson production at the LHC, its observation was extremely challeng-
ing. Here we address a channel where the Higgs boson decays into two photons (H — YY) and the
two top quarks decay into jets. To ensure the results are as realistic as possible, we closely follow
an analysis strategy similar to that employed by ATLAS [1]. Starting from reconstructed events
with two photons and at least three jets, we train classifiers to separate the (fH (H — YY) signal
from the dominant background of this analysis, non-resonant two-photon production. The training
uses 23 kinematic variables similar to those in [1]: the transverse momentum p7, pseudo-rapidity
n and b-tagging status of up to 6 leading jets, the magnitude of the missing transverse momentum,
as well as the py/myy (my, denotes the invariant mass of the photon pair) and 1 of the two photons.

The search for H — u*u~ decay (Higgs boson decay into two muons) has become one of the
most important topics in the LHC physics program [3, 4], to probe the Higgs coupling to second-
generation fermions. The main challenge results from the small H — pu™u~ decay branching
ratio of about 0.02%, but with more future data, the LHC experiments could establish or exclude
the Higgs-muon coupling, either of which would be an exciting discovery. Following an analysis
strategy similar to that used in ATLAS, we divide reconstructed two-muon events into several n;
(jet multiplicity) channels, and focus on the n; > 2 channel to target vector boson fusion (VBF)
Higgs production, whose signature is two forward jets. We train classifiers to distinguish between
the H — u™u~ signal and the dominant background, the production of a pair of muons through the
exchange of a Z boson or a virtual photon (Z/y* — pu™u™). The training is based on 13 kinematic
variables similar to those in [3]: the py and rapidity Y of the two-muon system, the absolute value
of the cosine of the lepton decay angle in the Collins-Soper frame, the pr and 1 of the two leading
jets, the relative azimuthal angle of each jet with respect to the di-muon system, the pr, ¥ and
invariant mass of the two-jet system, and the relative azimuthal angle between the two-jet system
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Figure 1: Representative Feynman diagrams for (a) tfH production, (b) H — Yy decay, (c) non-resonant
two-photon production, (d) VBF Higgs production, (e) H — u+u~ decay, and (f) Z/y* — uu production.
In these diagrams, H denotes a Higgs boson, g a gluon, g a quark, ¢ a top quark, b a bottom quark, £ a muon,
W a W boson, Z a Z boson, V a W boson or Z boson, and ¥ a photon.

and the two-muon system. Figure 1 shows representative Feynman diagrams for the signals and
backgrounds in the tfH and H — u*u~ analyses. In both cases, we generate all events using
MadgraphS5_aMC@NLO [5] plus Pythia6 [6], with the center-of-mass energy of the proton-proton
collisions set to 13 TeV. The ATLAS detector response is simulated with Delphes [7]. The events
are then passed to the machine learning algorithms, whether classical or quantum.

3. Application of Three Quantum Machine Learning Algorithms to LHC Physics

3.1 Method 1: Variational Quantum Classifier

The Quantum variational classifier method, proposed in Ref. [8], includes data encoding via
feature map circuits, a quantum variational circuit with parameters, a measurement and a conver-
sion from the measurement to a classification label.

We studied this method using simulation and IBM quantum computer hardware with 10 qubits
in Qiskit [9]. Ten independent datasets are trained and the performance are averaged. A classical
SVM [10] and a classical BDT [11] are trained using the same dataset as benchmarks for classical
machine learning algorithms. Figure 2 shows comparable receiver operating characteristic (ROC)
curves among the three methods, for both the t7H and H — u*u~ analyses. The values of the area
under the ROC curve (AUC) are also shown. Figure 3 shows the results comparing the quantum
simulation and hardware.

3.2 Method 2: Quantum Support Vector Machine Kernel Method

The quantum support vector machine kernel method, or QSVM-Kernel, introduced in Refs. [8,
12], leverages the quantum state space as a feature space to efficiently compute kernel entries. We
employed QSVM-Kernel algorithm on the t7H analysis, using up to 20 qubits on the quantum
computer simulators and up to 15 qubits on the quantum computer hardware.
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Figure 2: ROC curves of the quantum variational classifier method on the ibmq QasmSimulator (blue), the
classical SVM (yellow), and the BDT (green) for (a) the ttH and (b) the H — u* 1™ analyses.
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Figure 3: ROC curves of the quantum variational classifier method showing comparison between the quan-
tum simulator and quantum hardware for (a) the t7H and (b) the H — p ™ 1~ analyses.

The algorithm maps the input feature vector, X, non-linearly to a quantum state of N qubits,
¢ (X), by applying a quantum feature map circuit. The similarity of each input event pair is com-
puted as the the inner product of the quantum states, K (¥1,%) = | (¢(%1)|¢ (%)) |>. The kernel
entries are then used to find an optimal separating hyperplane that separates signal from back-
ground. The QSVM-Kernel algorithm is implemented in Google TensorFlow-Quantum [13], IBM
Qiskit [9] and Amazon Braket [14]. The performance with increasing the number of qubits and the
number of training events are studied. For each configuration, 60 independent datasets are trained
and the performance are averaged to reduce the statistical fluctuations.

The QSVM-Kernel algorithm gives comparable performance to its classical counterpart, SVM,
as well as the classical BDT, as shown in Figure 4(a). Figure 4(b) overlays the results from
TensorFlow-Quantum, Qiskit and Bracket frameworks using 15 qubits and 20000 training events,
all of which gives close performance.

In Figure 5, the ROC curve using the “ibmq paris” hardware is compared to the simulation
using 15 qubits, 100 events. The performance achieved by the quantum computer hardware is
promising and approaching the noiseless quantum computer simulator.

3.3 Method 3: Quantum Neural Network

The quantum neural networks (QNNs) bridges the neural network algorithms with the quan-



g\p{li%gtion of Quantum ML to HEP Analysis at LHC using IBM Quantum Computer Simulators and Hardware
. L. Wu

1.0 T T 1.3L T T T T
0.9 — \\ 0.9 i \
So.8 Sos
- -
A . So.7k— \ i
To.6f ;{:, 15 qubits, 20000 event i To.6 ;t: 15 qubits, 20000 event
2os ; 'E 0.5 t
= i
©0.4F  QSVM-Kernel (Google-TFQ) 00.4F  QSVM-Kernel (Google-TFQ)
®o.3k (AUC = 0.922 * 0.002) So.3} (AUC = 0.922 * 0.002)
< Classical SVM U | _.. QSVM-Kernel (IBM-Quantum)
20.2F 77 (AUC = 0.920 + 0.002) 20.2r (AUC = 0.922 * 0.002) bt
Classical BDT o.1f..... QSVM-Kernel (Amazon-Braket) @ @ |
0.1f -+ (AUC = 0.921 + 0.002) . (AUC = 0.922 * 0.002) I
08561 07 03 0.4 0.5 0.6 0.7 0.8 0.9 L0 080 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 L0
Signal acceptance Signal acceptance
(a) (b)

Figure 4: ROC curves of various classifiers in the ##H analysis using 15 qubits and 20000 events. Each
curve represents results averaged over 60 statistically independent datasets.
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Figure 5: ROC curves of the QSVM-Kernel classifier with the “ibmq paris” quantum computer hardware
and the noiseless quantum computer simulator using the 7H analysis datasets of 15 qubits and 100 events.

tum computing. It is designed to replace the computational intensive part of a classical NN algo-
rithm to by a quantum algorithm that can be performed on a quantum computer, with the aim of a
better efficiency and performance. The large latent space represented by the qubits in QNNs may
potentially lead to a better global minimum than the classical neurons in classical NNs. This field
attracted enormous attentions from researchers, with many works done using the existing software
libraries such as TensorFlow Quantum [13], Qiskit [9], etc.

To fit to the NISQ devices, a hybrid QNN of three layers is explored in this study. The first
layer is a classical dense layer to transform the input features with higher dimensions to lower
dimensions such that they can be encoded in a low number of available qubits. The second layer
is the quantum layer—the core part of the QNN architecture. The quantum layer consists of a
featuremap circuit encoding the classical input into a quantum state, a variational circuit containing
the trainable parameters, and the measurement measuring the quantum states. The output from the
first layer is encoded into the qubits with the featuremap circuit and then a variational circuit with
trainable parameters (parametrised circuits) is applied. Measurement is performed on all the qubits.
Results are then plugged to a second classical dense layer to convert to a classification label. The
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classical neuron weights and the parameters associated with the quantum circuits are updated using
a gradient-based method during the training.
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Figure 6: ROC curves of various classifiers using the tfH analysis datasets of 100000 events and 23 input
variables (a), ROC curves of the QNN classifier with the “ibmq paris” quantum computer hardware and IBM
quantum computer simulator using the 1fH analysis datasets of 100 events (b).

This computing model is constructed using TensorFlow Quantum library [13] and applied to
the t#H analysis. The input events are divided into five datasets, each with a training sample, a
validation sample, and a test sample. With each dataset, a 15 qubits QNN model, a classical Deep
Neural Network (DNN) model, and a classical Boosted Decision Tree (BDT) mode are trained
and evaluated. The final performance is an average over the five datasets. Comparable results are
observed among the three models, as is shown in Figure 6(a).

To demonstrate the power of the QNN algorithm, a training with 100 events and 10 qubits is
performed on one of the IBM quantum computers. The performance from the quantum computer
hardware (ibmq paris) is similar to the simulation using the same number of events and qubits as is
shown in Figure 6(b).

4. Summary

In summary, we have successfully employed three types of quantum machine learning algo-
rithms: the variational quantum classifier, the quantum support vector machine kernel method, and
the quantum neural network, focusing on the t7H (H — yy) and H — u*u~ LHC HEP flagship
analyses with Delphes simulation events. Our results on both quantum simulators and hardware
demonstrate that quantum machine learning on gate-based quantum computers, where computing
is achieved by a sequence of quantum gates as opposed to D-wave quantum annealers, already has
the ability to differentiate between signal and background in realistic physics datasets.

The greatest present challenge of using quantum computer hardware for machine learning in
future HL-LHC physics is the size of the event samples and the number of qubits. Currently, each
hardware job uses way less events than simulation due to the limitation of the access time. The
number of qubits to use is restricted, as well as the circuit length and number of entanglement gates
in the algorithms. As far as the authors are aware at the time of writing, the maximum numbers of
qubits available from IBM or Google quantum hardware are 65 and 54, respectively.
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In the context of HEP data analysis, future studies will aim to show that quantum machine
learning outperforms classical machine learning in classification power. In simulations, we are
confident that this may be achieved by exploiting a larger number (e.g., > 30) of qubits. Fur-
thermore, more advanced quantum computers may offer increases in speed for quantum machine
learning, which is critical for such HEP applications. Indeed, roadmaps presented by IBM and
Google suggest that future quantum hardware will have reduced noise, improved running time, and
achieve a performance close to noiseless quantum simulators, an expectation which is justified by
the recent large investments and fierce international competition in quantum technology.
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