
P
o
S
(
E
P
S
-
H
E
P
2
0
2
1
)
6
2
5

A
TL

-P
H

Y
S-

PR
O

C
-2

02
1-

05
7

17
Se

pt
em

be
r

20
21

METNet: A combined missing transverse momentum
working point using a neural network with the ATLAS
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In order to suppress pile-up effects and improve resolution, the ATLAS experiment at the LHC
employs a suite of working points for missing transverse momentum (pmiss

T ) reconstruction, and
each is optimal for different event topologies and different beam conditions. A neural network (NN)
can exploit various event properties to pick the optimal working point on an event-by-event basis,
and also combine complementary information from each of the working points. The resulting
regressed pmiss

T (METNet) offers improved resolution and pile-up resistance across a number of
different topologies compared to the current pmiss

T working points. Additionally, by using the NN’s
confidence in its predictions, a machine learning-based pmiss

T significance (‘METNetSig’) can be
defined. This contribution presents simulation-based studies of the behaviour and performance of
METNet and METNetSig for several topologies compared to current ATLAS pmiss

T reconstruction
methods.
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1. Introduction

Missing transverse momentum (pmiss
T ) [1] is defined as the magnitude of the negative vectorial

sum of the transverse momentum of all the visible objects produced in the hard scatter of a proton–
proton collision event in the ATLAS detector [2] at the LHC. ATLAS employs several working
points for pmiss

T reconstruction, each of which is optimal for different event topologies and levels of
pile-up. The working points considered here are: Loose, Tight, Tighter and Tenacious. These have
increasingly strict selections on hadronic jets. The variable pmiss

T significance [3] is also used to
separate processes with ‘real’ pmiss

T (from genuine invisible particles, such as neutrinos) and ‘fake’
pmiss
T (from detector mis-measurement and pile-up).

This contribution presents the methods and results of training a neural network (NN) to pick
and combine the pmiss

T working points for each event to produce a new pmiss
T definition (‘METNet’),

and also to define a machine learning-based pmiss
T significance (‘METNetSig’). Further details on

this study can be found in Ref. [4].

2. Neural network architecture

The NN is a multi-layer perceptron trained on about three million tt̄ and di-boson MC events.
The NN predicts generator-level pmiss

x,y (pmiss, True
x,y ) given 60 input features including pmiss

x,y,T predictions
for the Loose, Tight, Tighter and Tenacious working points, plus additional information characteris-
ing pile-up and event topology, such as number of primary vertices and mean number of interactions
per bunch crossing.

Results are shown for a NN trained using two loss functions:

1. L = LHuber =

{
1
2 (y − ŷ)2 , |y − ŷ | ≤ δ

δ |y − ŷ | − 1
2δ

2 , otherwise

2. L = LHuber + LSinkhorn

where y and ŷ are the NN’s prediction and target respectively and δ is set to 3
2 . Here LSinkhorn is

the Sinkhorn distance between the output and target batch which is included to reduce a bias in the
distribution of the NN’s predictions. Sample weights are also used to reduce a bias towards the
bulk of the training set. The weight of each event is calculated using the reciprocal of the pmiss, True

T
histogram of the training set.

The training and testing sets are passed through two pre-processing steps. First, to remove φ
invariance from the inputs each event is rotated such that pmiss, Tight

T points along the x-axis. Then,
each input/output feature is standardised by subtracting the mean and dividing by the standard
deviation. The NN outputs are transformed by the inverse of these steps.

3. METNet: Resolution and bias

Figure 1 shows the root-mean square of the deviation from truth of the pmiss
x,y predictions (ie.

the resolution) for the four working points and METNet both with and without the Sinkhorn loss.
METNet has improved resolution compared to the pmiss

T working points for both topologies. The
performance for Z → µµ events and stability against pile-up is particularly notable, as this is a
topology which was not seen by the NN during training and which contains no real pmiss

T .

2



P
o
S
(
E
P
S
-
H
E
P
2
0
2
1
)
6
2
5

METNet Benjamin Hodkinson

15

20

25

30

35

40

R
M

S(
pm

iss
x,
y
−
pm

iss
,T
ru
e

x,
y

) [
G

eV
]

ATLAS Simulation Preliminary
t ̄t, √s =13TeV

Tight
Tighter
Loose

Tenacious
METNet
METNet (Sk)

0 50 100 150 200 250
pmiss, True
T  [GeV]

0.8

1.0

W
P/

Ti
gh

t

(a) tt̄

10

15

20

25

30

R
M

S(
pm

iss
x,
y
−
pm

iss
,T
ru
e

x,
y

) [
G

eV
]

ATLAS Simulation Preliminary
Z→ μμ, √s =13TeV

Tight
Tighter
Loose

Tenacious
METNet
METNet (Sk)

0 5 10 15 20 25 30 35
NPV

1.00

1.25

W
P/

Ti
gh

t

(b) Z → µµ

Figure 1: Root-mean-square of the difference between the predicted value of pmiss
x,y and pmiss, True

x,y for (a) tt̄
events in bins of pmiss, True

T , (b) Z → µµ events in bins of number of primary vertices. METNet is shown
with and without the Sinkhorn (Sk) loss, along with current pmiss

T working points. The lower panel shows
the ratio with respect to the Tight working point, and the hatched band indicates the statistical uncertainty
for the Tight working point [4].
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Figure 2: pmiss
T distribution for METNet (with and without the Sinkhorn loss), pmiss, True

T and four pmiss
T

working points, for tt̄ events. Events are unweighted [4].

Figure 2 shows the pmiss
T distribution for METNet (both with and without the Sinkhorn loss).

Including the Sinkhorn contribution to the loss improves the agreement of the METNet distribution
with pmiss, True

T for 0 < pmiss
T < 100 GeV.

4. METNetSig

The pmiss
T significance is defined by weighting a pmiss

T prediction by a ‘confidence’, σ. The
state-of-the-art ATLAS implementation is an object-based pmiss

T significance [3], for which σ is
a function of the pT-dependent resolutions of the objects which enter the pmiss

T calculation. To
define a machine-learning based pmiss

T significance, the Huber loss function is replaced with the
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Gaussian negative log likelihood (GNLL) loss, LGNLL = logσx,y + 0.5
(
pmiss, NN
x,y −pmiss, True

x,y

σx,y

)2
. The

resulting NN has four outputs, (pmiss, NN
x , σx, pmiss, NN

y , σy), from which METNetSig is defined as
METNetSig= pmiss, NN

T /σ .
Figure 3 shows (a)METNetSig and (b) object-based pmiss

T significance [3] for a supersymmetric
signal process plus two Standard Model backgrounds. METNetSig has a similar shape to object-
based pmiss

T significance for each topology, but with a lower cut-off point. Note that the NN learns σ
independently of the object-based measurements that are inputs to object-based pmiss

T significance.
Nonetheless, METNetSig has similar real pmiss

T vs fake pmiss
T separation power.
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Figure 3: Distributions of (a)METNetSig and (b) object-based pmiss
T significance for a supersymmetric signal

point and WW and Z → µµ backgrounds. The lower plot shows the signal significance for a lower-bound
cut at each x-axis bin value [4].

5. Conclusion

This contribution presents the performance of METNet and METNetSig - variables defined
using the outputs of a neural network - compared to current ATLAS methods. METNet has
significantly improved resolution for a range of topologies, including those not seen during training.
Including a Sinkhorn contribution to the loss function reduces an observed negative bias in the NN’s
predictions. METNetSig shows similar behaviour per-topology to object-based pmiss

T significance,
and can distinguish between real pmiss

T and fake pmiss
T .
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