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Introduction. The large inflow of high-precision measurements from the Large Hadron Col-
lider (LHC) brings hadron collider phenomenology in a new era in which the LHC is a precision
machine. To match the accuracy and precision of experimental data, remarkable progress has
been made in the calculation of theory predictions for standard candle cross sections which now in-
clude radiative corrections at next-to-next-to-leading order (NNLO) O(α2

s ) and beyond in the QCD
strong coupling αs, and at next-to-leading order (NLO) O(αEW ) in the electroweak (EW) coupling
for numerous processes. At such level of precision, there are several effects whose magnitude can
compete in size with that of radiative corrections at NNLO, or N3LO, and that have observable
impacts. Examples of these effects, which we shall discuss below, are: (1) consistent inclusion of
EW corrections in the initial state of parton reactions in proton-proton collisions, (2) phase-space
suppression and other mass effects that are comparable in magnitude to higher-order corrections in
QCD and EW. These effects have been recently investigated by the CTEQ-TEA group [1, 2, 3, 4]
after the publication of the CT18 global analysis [5] of parton distribution functions (PDFs) of the
proton.

Impact of photon PDF in the CT18 global analysis. The photon PDF consists of a large elas-
tic contribution where the proton remains intact, and of an inelastic contribution in which the proton
breaks into a multihadron final state cf. [6]. According to this decomposition, various methods have
been introduced in literature to parametrize the photon content in the proton. These can be grouped
in first and second generation models. First generation models include the MRST2004QED [7],
NNPDF2.3QED [8], NNPDF3.0QED [9], and CT14QED [10] analyses. In the CT14QED analy-
sis, the inelastic contribution to the photon PDF was described by a two-parameter ansatz, coming
from radiation off the valence quarks, based on the CT14 NLO PDFs [11], and constrained by using
isolated photon production (ep→ eγ +X) cross section measurements [12] in deep inelastic scat-
tering (DIS) from the ZEUS collaboration. The elastic contribution is included in the CT14QEDinc
PDFs where the inclusive photon PDF at Q0 is defined by the sum of the inelastic and elastic con-
tributions obtained from the Equivalent Photon Approximation (EPA) [13]. The second generation
models are described in the LUXqed [14, 15], NNPDF3.1luxQED [16], MMHT2015qed [17], and
CT18qed [1] analyses. The CT18qed study aims at constraining the photon PDF by using the
LUXqed ansatz with two approaches. In one approach, the CT18lux fit, the photon PDF is calcu-
lated directly using the LUXqed master formula at any scale µ . In this case, quark and gluon PDFs
are inherited from the CT18 NNLO global fit with no modifications. The momentum sum rule of
CT18lux PDFs is weakly violated as the photon enters as an additional small component (about
0.2% at 1.3 GeV). In an alternative realization, the CT18qed, the photon PDF is initialized using
the LUXqed formula at a lower scale, µ ∼ µ0, and evolved to higher scales with a combined QED
kernel at O(α), O(ααs) and O(α2). The difference between CT18lux and CT18qed is mainly
ascribed to the size of missing higher-order contributions when different scales are matched. It is
important to point out that integrals of the unpolarized electromagnetic structure functions (SFs)
F2,L(x,Q2) in the LUX formalism are carried out over a wide rage of Q2 values which can be sensi-
tive to higher twists and other nonperturbative QCD contributions. These require explicit modeling
as they are not suppressed at low Q2 and must be accounted for to get a genuine estimate of the
uncertainties. On the other hand, in a typical global PDF analysis at NNLO, only leading-twist
contributions are considered in the factorization formula where the Q2 and W 2 values are chosen
such that sub-leading twist effects are suppressed. In Figure 1, we illustrate a comparison between
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Figure 1: Left: A comparison of the photon PDFs among the CT18lux, CT18qed(1.3GeV), LUXqed17
[15], NNPDF3.1luxQED [16], and MMHT15qed [17]. Right: Plot of the self-normalized uncertainty bands
for each of the photon PDFs examined in this analysis.

the central values and uncertainties for the photon PDF at µ = 100 GeV as obtained by differ-
ent groups. This summarizes the main findings of the CT18qed analysis. In the right inset, we
notice that in the intermediate-x region (10−3 ≤ x ≤ 0.1), all photon PDFs exhibit comparable er-
ror bands. In the left inset, the CT18lux photon PDF lies in between that of LUXqed (and also
NNPDF3.1luxQED) and MMHT2015qed, while the CT18qed photon appears to be suppressed. In
the small-x region, the CT18qed photon is larger than that of CT18lux due to the x behavior of the
SF ratio FLO

2 /FNNLO
2 at high scale µ (cf. [1] and related discussion). The MMHT2015qed photon

instead becomes smaller because the singlet PDF combination becomes smaller. In the large-x re-
gion, both MMHT2015qed and CT18qed photon PDFs are smaller as compared to that obtained in
the LUX approach. This is because the inelastic contribution to the photon PDF receives substantial
nonperturbative corrections through the structure functions F2,L at the initial lower scale µ0. There-
fore, DGLAP evolution in both MMHT2015qed and CT18qed results in smaller PDFs. However,
the nonperturbative contributions to the structure functions at low scales in the DGLAP approach
result in larger uncertainty at large x [1]. The CT18qed PDFs are the recommended CTEQ-TEA
PDFs with the photon included as an active parton inside the proton, and can be used for theory
predictions at any scale µ greater than 3 GeV.1

The impact of heavy-flavor production on the CT18 PDFs. Other contributions which
compete in size with higher-order corrections in QCD and EW are related to mass effects and
phase-space suppression due to heavy-flavor production in DIS reactions. DIS cross section mea-
surements constitute the most important component of data ensembles in global analyses of PDFs.
Therefore, it is critical to consistently account for the heavy-parton mass effects in the factoriza-
tion formula. The modern literature [18, 19, 20, 21, 22, 23, 24, 25, 26] contains various modifi-
cations of the factorization theorem that are introduced to study heavy-flavor production in DIS
structure functions and that are currently employed in recent global QCD analyses to determine
proton’s PDFs [27, 28, 5, 29, 30]. The neutral current (NC) DIS data of charm and bottom pro-

1As compared to the CT18 analysis which uses a starting scale µ0 = 1.3 GeV, here we choose as default scale
the PDF matching scale µ0 = QPDF = 3 GeV. This reduces the uncertainty resulting from low-scale nonperturbative
contributions in the structure functions [1].
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duction for the structure functions Fcc̄
2 and Fbb̄

2 at high Q2 [31], and the reduced cross sections
σ cc̄

red for the combined charm data at HERA [32] provided important information about proton’s
PDFs, in particular the gluon and strange-quark PDFs, in the CT18 global analysis [5]. These
data [31, 32], were recently updated by the H1 and ZEUS collaborations which published a new
set of charm and bottom production measurements [33] in an extended kinematic region, and with
much smaller uncertainties due to simultaneous combination of c and b data. When the new charm
and bottom combination [33] is included in the CT18 global analysis at NNLO, the fit of these
data becomes challenging. Our preliminary study shows that in the best scenario, the optimal de-
scription corresponds to a χ2/Npt that is no less than 1.7. In contrast, in the CT18NNLO fit, we
obtain χ2/Npt = 1.98 for charm production (Npt = 47), and χ2/Npt = 1.25 for bottom production
(Npt = 26); while in the CT18XNNLO fit (a variant of CT18NNLO) we obtain χ2/Npt = 1.71 for
charm and 1.26 for bottom production. The new c, b combination shows disagreement with several
processes included in the CT18 baseline. Examples are Z production at LHCb at 7 and 8 TeV, and
CDF run-II, and single inclusive jet production, and pT and y double differential cross sections in
tt̄ production at CMS 8 TeV. For this reason, these data [33] were not included in the CT18 global
analysis. In this preliminary study, we investigated to a deeper extent features and impact of the
new c, and b combined measurements [33] from H1 and ZEUS on the CT18 PDFs. We explored
the new correlated systematic uncertainties and performed dedicated studies of the parameters en-
tering the theory calculation of the NNLO SFs. The complete results of this investigation will be
published in a forthcoming paper.

Description of the charm and bottom combination at HERA. As reported in several studies
by different groups [34, 30, 35, 36, 28, 27] the χ2 description for the new c and b combined
measurements at HERA [33] is poor, and the theory seems to fail to describe the slope of the
data in the intermediate/small x region 10−5 ≤ x ≤ 0.01. To improve the description, we tried to
vary different parameters in the fit, in combination with different fit settings. Heavy flavors in
DIS structure functions are treated according to S-ACOT-χ NNLO general mass variable flavor
number (GMVFN) scheme [26], which is the default scheme utilized in all CTEQ analyses. In
one attempt to improve the description of these data we varied parameters of the x-dependent DIS
factorization scale, defined as µDIS(x) = A

√
m2

Q +B2/xC, and used for the calculation of low-
x DIS cross sections in the CT18XNNLO fit. The CT18XNNLO fit (a variant of CT18NNLO) is
generated by including the µDIS(x) scale choice for low-x DIS data. This x-dependent scale choice
is expected to mimic the main behavior of low-x resummation [37] and is inspired by saturation
models [38, 39]. In Fig. 2, we show the changes on the gluon PDF at Q = 2 GeV and Q0 = 1 GeV
at NNLO when two parameters, the MS charm-quark mass mc(mc), and B, are varied in µDIS(x),
after fixing the parameters A = 0.5 and C = 0.33. In the left inset, the solid black curve corresponds
to the fit with mc(mc) = 1.15 GeV with χ2(HERA HQ)/Npt = 1.62, while the dotdashed represents
the fit with mc(mc) = 1.30 GeV and with χ2(HERA HQ)/Npt = 2.33. In the right inset, the solid
black curve corresponds to the fit with B = 0.10 GeV and χ2(HERA HQ)/Npt = 1.58, while the
dotdashed represents the fit with B = 0.60 GeV and χ2(HERA HQ)/Npt = 1.52. Error bands are
shown at the 90% confidence level for CT18NNLO and CT18XNNLO. Overall, these preliminary
findings indicate that the new charm and bottom production measurements at HERA seem to have
a preference for a harder gluon at intermediate and small x.
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Figure 2: Ratio to the CT18XNNLO gluon PDF as a function of x at Q = 2 GeV and Q0 = 1 GeV. Left:
scan over the MS charm-quark mass mc(mc) while mb(mb) = 4.18 GeV. Right: scan over the B parameter in
µDIS(x). Error bands are shown at 90% confidence level for CT18NNLO (red) and CT18XNNLO (blue).
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