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At the Institute for Nuclear Physics in Mainz the new electron accelerator MESA will go into oper-
ation within the next years. In the extracted beam operation (150 MeV, 150 pA) the P2 experiment
will measure the weak mixing angle in electron-proton scattering. The high-power beam dump of
this experiment and the 20,000 hours operation time are ideally suited for a parasitic dark sector
experiment — DarkMESA.
The experiment is designed for the detection of Light Dark Matter (LDM) which in the simplest
model couples to a massive vector particle, the dark photon . It can potentially be produced in
the P2 beam dump by a process analogous to photon Bremsstrahlung and can then decay in Dark
Matter (DM) particle pairs XX if kinematically allowed. A fraction of them scatter off electrons
or nuclei in the DarkMESA calorimeter.
For the calorimeter, high-density PbF, and lead glass SF5 Cherenkov radiators and photomulti-
pliers from previous experiments will be used. In Phase A a prototype with 25 PbF; crystals and
in Phase B ~ 2000 PbF, and SF5 crystals with a total active volume of 0.7 m? are foreseen. For
the prototype stage, a hermetic veto system with two layers of plastic scintillators and 1 cm of lead
shielding is currently under development.
Within a MadGraph and Geant4 simulation the accessible parameter space was evaluated. The
experimental setup was optimized and further concepts were investigated.
DarkMESA DRIFT is currently considered as an addition to the project. A Time Projection
Chamber (TPC) filled with CS; at low pressure will serve as DM detector. With the nuclear recoil
threshold being in the keV range the accessible parameter space can be extended.
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1. Introduction

The Institute for Nuclear Physics in Mainz houses the electron accelerator Mainz Microtron
(MAMI) and is expanding its experimental possibilities with the new Mainz Energy recovering
Superconducting Accelerator (MESA). The first beam is expected in 2023.
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Figure 1: Model of the Mainz Energy recovering Superconducting Accelerator (MESA) [1] with enlarged
views of the MAGIX experiment [2], the P2 experiment [3] and the P2 beam dump. (status 2021)

The accelerator will have two operating modes. An energy-recovering linac (ERL) mode with
a beam energy up to 105 MeV and a beam current of 1 mA, and an extracted beam (EB) mode with a
polarized beam of 150 MeV and 150 pA. In each circulation the beam electrons gain up to 50 MeV
energy in two superconducting cryomodules.
After two recirculations in the ERL mode the beam is guided to the windowless chamber of the
Mainz Gas Injection Target Experiment (MAGIX). There, the beam interacts with a thin gas jet
reaching luminosities in the order of 10%3/cm?s. The scattered electrons can be detected with a
GEM based Time Projection Chamber (TPC) in the focal plane of the magnetic spectrometers.
Most of the beam electrons pass through the target undisturbed and their energy will be returned
stepwise to the cavities. MAGIX will cover a variety of precision experiments including the search
for visible and invisible decays of dark photons.
After three recirculations in the EB mode the beam will reach the 60 cm long liquid hydrogen target
of the P2 experiment. In about 20,000 hours the weak mixing angle in electron-proton scattering
will be measured with unprecedented precision. Energy recovery will not be possible in this case
and a high-power beam dump at the end of the P2 beam line is required. This aluminium beam
dump is ideally suited as a target for a DM experiment — DarkMESA.
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2. DarkMESA Concept

Light Dark Matter (LDM) could be interacting with the Standard Model (SM) through a
(massive) dark photon y’ coupling with strength &. In the simplest model y’ is produced radiatively
by Dark Bremsstrahlung in the beam dump. Under the condition m,, >2m,, the invisible decay
¥y’ — XX is possible [4]. Due to the low interaction probability with SM particles, the LDM
particles can reach the well shielded DarkMESA experimental site, while almost all beam-related
SM particles are stopped in the concrete walls before. A fraction of the LDM particles could scatter
off electrons in the high-density Cherenkov radiators of the DarkMESA calorimeter. Therefore the
detector response of PbF, crystals and various types of lead glass were studied at MAMI for beam
electrons below 14 MeV. The results were compared with a Geant4 simulation of energy-loss,
light production, transport, and detection. With a signal height of 1.8 and 1.5 photoelectrons per
MeV energy deposition, PbF, and the lead glass Schott SF5 were found to perform best [5]. In a
prototype stage (Phase A) 25 PbF, crystals and in Phase B 900 PbF, crystals and 1024 SF5 blocks
with a total active volume of 0.7 m? are planned. The crystals and photomultipliers will be re-used
from former experiments and will be arranged in a modular wall layout, shown in Fig. 2b.

Pb-Back

OV-Mount

Pb-Main
5x5 PbF,
Prototype IV—Mount\A\
o 4
Pb-Front

Carrier Board
IV-Front

-~
IV = Inner Veto
-~ OV = Outer Veto
Collector Board OV-Front

(a) DarkMESA Phase A

Pb-glass
calorimeter

(64 x 16 = 1024 crystals)
Inner veto
Pb layer

Outer veto

PbF, calorimeter
(36 x 25 = 900 crystals)

(b) DarkMESA Phase B (c) DRIFT detector

Figure 2: Exploded view of the DarkMESA Phase A setup with a PbF, prototype calorimeter inside a
hermetic veto system (a), DarkMESA Phase B with ~ 2000 crystals (b) and a photo of the DRIFT detector
inside a steel vacuum vessel with directional signatures for LDM particles (taken from [6]) (c).
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3. Radiation Studies and Veto Concept

The LDM events are expected to be extremely rare, which is why a precise knowledge of the
background is required. From the electron beam no significant background is expected — the beam
energy is below the pion production threshold, no beam related neutrinos are expected and in first
FLUKA simulations no beam-induced neutrons reach the DarkMESA hall. The major background
is expected from cosmic-rays. The response characteristics of PbF, and SF5 to fast neutrons (MeV
range) was studied experimentally and in comparison to plastic scintillators a 103 times smaller
detection efficiency was found. For the veto system single panels of 2cm thick EJ-200 plastic
scintillators, read out by Silicon Photomultipliers (SiPMs), were studied in the MAMI electron
beam [7]. A hermetic prototype veto system composed of two scintillator layers and a 1 cm thick
lead absorber layer is studied at the moment (see Fig. 2a). Cosmic-ray simulation studies showed a
veto efficiency of 99.62 % for Phase A. For Phase B a 5 cm thick lead layer is foreseen, increasing
the efficiency to more than 99.9 %. For Phase B in the scheduled beam time of 6,600 h still 10°
background events remain. An additional detector on top of the hermetic veto and calorimeter
system to reject cosmogenic background or the use of outer calorimeter crystals as veto could
increase the efficiency. The use of beam-off data, a rotation of the calorimeter and the analysis of
signal shapes will allow a better understanding of the background with a direct measurement.

4. Expected Reach and Outlook

Within a MadGraph and Geant4 simulation the accessible parameter space for DarkMESA
was studied. The energy and angular distribution of e™ and e~ particles produced in the beam dump
was used to calculate the final state four-vectors of the dark photon decay with MadGraph. The
four-vectors are used as input for a Geant4 DM generator, placed at the first radiation length of the
beam dump. The cross section for interacting with the DarkMESA calorimeter was calculated and
the total number of detected DM particles was obtained. Fig. 3 shows the parameter space for the
invisible decay y’ — XX with the DM mass m | on the horizontal axis and variable y, proportional
to the kinetic mixing &2, the coupling of ¥’ to X particles (ap) and the mass ratio (m,//m )()4’ on
the vertical axis.

stage description period scheduled time EOT
Phase A prototype 1. - 4. year 2,200h 7.42-10%!
Phase B PbF, + SF5 4. - 6. year 6,600 h 2.22-10%
DarkMESA DRIFT  DRIFT detector 4. - 6. year 6,600 h 2.22-10%
Phase C Phase B + extension 7. - 12. year 13,200 h 4.45-10%

Table 1: Timetable of the proposed stages.

Beside the DarkMESA calorimeter Phase A and B, the projection for a complementary de-
tection method, DarkMESA DRIFT, is shown. It will use the refurbished Directional Recoil
Identification From Tracks (DRIFT) Negative lon Time Projection Chamber (NITPC) (see Fig. 2¢).
The active volume will be 1 m* CS, at a low pressure of 53 mbar. It can detect nuclear recoils
with energies down to 20 keV. Spatial and directional signatures give this type of detector powerful
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background rejection abilities at very low energies. The DRIFT detector is capable of detecting
neutrons, and cosmic-ray simulations show that about 7 s~! m~2 reach the experimental site. This is
why a specific high-efficiency neutron veto system is under development. The experiment could run
in parallel to DarkMESA Phase B in the second funding period with a scheduled time of 6,600 h.
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Figure 3: Parameter space for dark photons decaying invisibly to XX with the DM mass m, on the horizontal
axis and variable y, proportional to the kinetic mixing &2, the coupling of y’ to X particles (ap), and the
mass ratio (m,, /m )()4’ on the vertical axis. The predictions for the exclusion limit with 90 % C.L. are shown
in red. The detection efficiency is 95 %, the conservatively estimated electron recoil energy threshold for
DarkMESA is 10 MeV and the nuclear recoil energy threshold for DarkMESA DRIFT is 20keV. The
EOT were set according to the time schedule in Tab. 1. The existing exclusion limits from various other
experiments [8—12] are shown.

The projections in Fig.3 assume zero background, a confidence level of 90 %, a detection

efficiency of 95 %, ap = 0.5, and my,, = 3m,. The electron recoil energy threshold for Phase A
and B is conservatively set to 10 MeV. The black lines, the so-called targets, represent the minimum
couplings that are still consistent with the observable abundance of thermal DM. DarkMESA
Phase A lies within the existing limits, while Phase B can achieve stronger limits in the low mass
range. With its low threshold and large active volume, DarkMESA DRIFT can expand the accessible
parameter space and reach the thermal relic targets.
As seen in Tab. 1, the major part of scheduled time is available for a Phase C. A measurement with
the Phase B setup for an extended period of time can improve the limits only slightly. That is why in
addition an innovative concept of using thin radiation shielding glasses is studied at the moment. A
variety of plates is stacked together along the beam axis, resulting in a directionality of the signals
and a reduction of the volume cost ratio due to the commercial availability.
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The ability to perform experiments with different detector concepts and detection methods at one
experimental site is a great advantage of the beam dump experiment at MESA.
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