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The ability to execute Deep Neural Networks at the trigger level to improve online selection
performance will be crucial for current and future high-energy physics experiments. Low-latency
hardware solutions exist, e.g. FPGAs, but the primary constraint to the implementation is often
related to the model’s size, which has to be finely tuned not to exceed the available memory.
We present here an approach to reduce the size of models, having under control the model
performances. Promising results are shown in the classification problem of selecting proton-
proton collision events in which the boosted Higgs boson decays to two b-quarks, and both the
decay products are contained in a large and massive jet, against an overwhelming QCD background.
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1. Introduction

Current and future high-energy physics experiments at particle colliders will have to cope with
extremely high collision rates; at the Large Hadron Collider, for example, events are produced at
40 MHz frequency. It is, therefore, necessary to implement real-time event processing capabilities.
Among the standard pattern recognition algorithms thought to be run on Look-Up Tables, Machine
Learning methods, particularly Deep Neural Networks (DNN), are spreading quickly. As a result,
there is growing interest in executing such algorithms at the trigger level to improve online selection
performance. The main issue in running these algorithms in real-time is the amount of operation
that needs to be computed. Field-programmable gate arrays (FPGA) can fit this task thanks to their
low latency and high throughput. However, a significant drawback about this kind of hardware
choice is that the model’s size that should be loaded on the FPGA depends strongly on the FPGA
specifications. In the last years, new techniques that reduce the size of DNN models have been
developed and tested for FPGA applications. Baseline techniques in this regard are pruning and
quantization[1].

Here we propose an alternative approach to reduce the size of a DNN model based on the
introduction of CancelOut layers in the networks. This type of layer can be used both for feature
selection and to reduce the hidden structure by deactivating not relevant nodes.

2. CancelQOut layer

The CancelOut layer [2] is composed of neurons that have one single input, as shown in fig. |
for a CancelOut layer used after the input layer. The node’s output is the product of the input
feature with the sigmoid of the associated weight. After the training, irrelevant features will have an
associated Cancelout weight that outputs small numbers after the sigmoid application. In contrast,
for the relevant features, the output will be close to one. In its original formulation, the weights
of the CancelOut layer are used as a metric to evaluate the impact of one feature in the decision
process of a DNN model. In this sense, it is fundamental to have weights that are different among
themselves. Our purpose is different; we developed a modified architecture of the CancelOut layer
so that only a certain fraction, defined by the user, of the CancelOut nodes are active (sigmoid of
the weight equal to 1) while the others are switched off (sigmoid of the weight equal to 0).

Input CancelOut First hidden
layer layer layer

Figure 1: Example of a CancelOut layer inserted after the input layer.
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3. Boosted H — bb tagging

We tested the CancelOut layer while developing a fully connected DNN to classify pp collision
events where a Higgs boson with very high transverse momentum decays to two b-quarks. In this
regime, the decay products of the Higgs boson are very collimated and it is challenging to resolve
the di-jet structure [3]. A single large and massive jet containing both the b quark originated jets is
more likely to be reconstructed. This channel is interesting for the study of Higgs boson properties
since it accounts for 58% of the total Higgs boson decays [4] and observations of deviations from
Standard Model prediction are expected in the boosted regime [5]. However, recognizing these
events in a pp collision experiment represents a challenging task, mainly because of the huge
irreducible background of QCD multi-jet production.

3.1 Simulated data and object reconstruction

The dataset used to develop the classifier is produced using a framework developed by com-
bining Pyhtia8[6], to generate high-energy physics events, Delphes [7], to simulate the detector
response and RAVE [8] for secondary vertex reconstruction. Large radius anti-k, jets [9] (large-R
jets) with R = 1 are reconstructed together with variable radius track jets [10] with Ryjax = 0.4,
Ryvin = 0.02 and p = 30 (p parameter determines how fast the effective jet size decreases with
the transverse momentum of the jet). For the large-R jets, we defined kinematic variables plus
jet substructure variables. For the variable R track jets, we defined kinematic variables plus the
b-tagging information and variables connected to the secondary vertex. We selected large-R jets
with p7 > 450Gev/c? and n < 2. Then we look for the 2 highest pr track jets contained in a
selected large-R jet. Therefore, the total number of initial features is 39.

3.2 Reduction of the number of input features

The different models were trained by varying the number of desired features that the CancelOut
layer must activate. The left plot in fig 2 shows the behavior of the CancelOut weight associated
with each feature when varying the number of requested features. Relevant features are activated
already when asking for a low number of features. Then, increasing the number of asked features
one by one, single features are activated and remain active in most cases. The performances of the
models are shown on the right side of fig. 2. It is important to notice that after a certain number of
features are switched on, there is no significant improvement in the performance. This confirms the
idea that irrelevant features were last activated.

3.3 Pruning of the hidden structure

CancelOut layers can also be inserted between hidden layers of the network to reduce the size
of the internal structure. As for the pruning technique, the user can define a priori the number of
nodes of the hidden layer to switch off. Figure 3 shows the performance of a model where the
CancelOut layer is inserted between the third and the fourth hidden layer of the classifiers to switch
off 25% of the nodes of the third layer.
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Figure 2: (Left) CancelOut weight for each feature as function of the desired number of features. (Right)
Background rejection rate versus Higgs tagging efficiency with large-R jets of different model trained by
varying the number of features.
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Figure 3: Background rejection rate versus Higgs tagging efficiency with large-R jets of two different models.
The CancelOut layer is used to reduce the hidden structure size.

4. Conclusion

For applications in future high-energy physics experiments, it is essential to reduce the size of a
neural network to run on hardware like FPGAs. In this work, we proposed an original method based
on the use of CancelOut layers to reduce the size of the input parameter space and prune the hidden
structure of the network. Promising results were shown in the development of a DNN classifier to
correctly identify pp events where a boosted Higgs boson decay to two b-quarks. Furthermore,
the CancelOut layer can be easily added to any existing model and used together with other neural
network reduction approaches.
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