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In this article, we report the 𝜌 resonance study using the HAL QCD method. We calculate the
𝐼 = 1 𝜋𝜋 potential at 𝑚𝜋 ≈ 0.41 GeV by a combination of the one-end trick, sequential propagator
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1. Introduction

Understanding the hadronic resonances from the first-principle lattice QCD simulation is one
of the most important subjects in particle and nuclear physics. The HAL QCD method [1–4],
which directly constructs inter-hadron potentials from spatial and temporal correlation functions
calculated in lattice QCD, is a way to shed light on the nature of those resonances with less
systematic uncertainties since we can directly study the pole structure of the S-matrix without any
model-dependent ansatz. There exists, however, a practical challenge for expensive computations
of all-to-all quark propagators in resonance studies. To overcome this difficulty, we have previously
explored one of the all-to-all techniques, the hybrid method [5], but it is revealed that the numerical
cost for the noise reductions is too large to employ simulations with larger lattice sizes [6, 7].

In this study, we introduce a new strategy to handle all-to-all propagators where we combine
three techniques: the one-end trick [8], the sequential propagator calculation [9], and the covariant
approximation averaging (CAA) [10]. We calculate the HAL QCD potential of the 𝐼 = 1 𝜋𝜋

interaction on gauge configurations at 𝑚𝜋 ≈ 0.41 GeV, where the 𝜌 meson is known to appear as a
resonance with𝑚𝜌 ≈ 0.89 GeV. The new strategy leads us to extract the potential at the next-to-next-
to-leading order (N2LO) in the derivative expansion for the first time. We study a pole structure of
the S-matrix using the N2LO potential and find a pole corresponding to the 𝜌 resonance. We also
discuss a comparison between our result and the previous one obtained by Lüscher’s finite-volume
method [11]. Details of our analysis are covered in the published paper [12].

2. HAL QCD method

The fundamental quantity in the HAL QCD method is the Nambu–Bethe–Salpeter (NBS) wave
function, which is defined as

𝜓𝑊 (r) = 〈0| (𝜋𝜋)𝐼=1,𝐼𝑧=0(r, 0) |𝜋𝜋; 𝐼 = 1, 𝐼𝑧 = 0, k〉, (1)

where |𝜋𝜋; 𝐼 = 1, 𝐼𝑧 = 0, k〉 is an asymptotic state for an elastic 𝐼 = 1 𝜋𝜋 system in the center-
of-mass frame with a relative momentum k, a total energy 𝑊 = 2

√︁
𝑚2

𝜋 + 𝑘2 and 𝑘 = |k|. A sink
operator (𝜋𝜋)𝐼=1,𝐼𝑧=0(r, 𝑡) is a two-pion operator projected to the 𝐼 = 1, 𝐼𝑧 = 0 channel given by

(𝜋𝜋)𝐼=1,𝐼𝑧=0(r, 𝑡) =
1
√

2
{𝜋+𝑠 (r + x, 𝑡)𝜋−𝑠 (x, 𝑡) − 𝜋−𝑠 (r + x, 𝑡)𝜋+𝑠 (x, 𝑡)}, (2)

𝜋+𝑠 (x, 𝑡) = 𝑑𝑠 (x, 𝑡)𝛾5𝑢𝑠 (x, 𝑡), 𝜋−𝑠 (x, 𝑡) = 𝑢̄𝑠 (x, 𝑡)𝛾5𝑑𝑠 (x, 𝑡), (3)

where 𝑞𝑠 (x, 𝑡) =
∑

y 𝑓 ( |x − y|)𝑞(y, 𝑡) for 𝑞 = {𝑢, 𝑑} are slightly-smeared up and down quark fields
with the smearing function 𝑓 (𝑟) ≡ {𝑒−𝑟 , 1, 0} for {0 < 𝑟 < 3.5, 𝑟 = 0, 3.5 ≤ 𝑟} in lattice unit. In
general, physical observables are independent of a choice of the sink operator (𝜋𝜋)𝐼=1,𝐼𝑧=0(r, 𝑡),
thus one can choose a convenient operator. In our case, we employ the slightly smeared-sink
operator (eq.(2)) since it reduces systematic uncertainty by making the potential in a short-range
region smoother.

We extract the potential from the normalized correlation function 𝑅(r, 𝑡), which is a sum of
NBS wave functions as

𝑅(r, 𝑡) ≡
〈0| (𝜋𝜋)𝐼=1,𝐼𝑧=0(r, 𝑡)J

𝑇 −
1
𝐼=1,𝐼𝑧=0(𝑡0) |0〉

𝐹𝜋 (𝑡 − 𝑡0)2 ≈
∑︁
𝑛

𝐴𝑛𝜓𝑊𝑛
(r)𝑒−(𝑊𝑛−2𝑚𝜋 ) (𝑡−𝑡0) + ... , (4)
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where 𝐹𝜋 (𝑡) is the pion two-point function, J𝑇 −
1
𝐼=1,𝐼𝑧=0 is a source operator which creates 𝐼 = 1

𝜋𝜋 states in 𝑇−
1 representation, 𝑊𝑛 is the energy of the 𝑛th elastic state and an ellipsis indicates

inelastic contributions. For the source operators, we choose 𝜌-type J𝑇 −
1
𝜌,𝐼=1,𝐼𝑧=0(𝑡0) and 𝜋𝜋-type

J𝑇 −
1
𝜋𝜋,𝐼=1,𝐼𝑧=0(𝑡0) in this study, defined by

J𝑇 −
1
𝜌,𝐼=1,𝐼𝑧=0(𝑡0) =

∑︁
x

1
√

2
(
𝑢̄(x, 𝑡0)𝛾3𝑢(x, 𝑡0) − 𝑑 (x, 𝑡0)𝛾3𝑑 (x, 𝑡0)

)
, (5)

J𝑇 −
1
𝜋𝜋,𝐼=1,𝐼𝑧=0(𝑡0) =

1
√

2

∑︁
y1,y2

𝑒−𝑖p3 ·y1𝑒𝑖p3 ·y2
(
𝜋−(y1, 𝑡0)𝜋+(y2, 𝑡0) − 𝜋+(y1, 𝑡0)𝜋−(y2, 𝑡0)

)
, (6)

where p3 = (0, 0, 2𝜋/𝐿). We use local quark fields for source operators.
By using an asymptotic behavior of the NBS wave function[2], we can define an energy-

independent non-local potential as[4][
∇2

𝑚𝜋

− 𝜕

𝜕𝑡
+ 1

4𝑚𝜋

𝜕2

𝜕𝑡2

]
𝑅(r, 𝑡) =

∫
𝑑3r′𝑈 (r, r′)𝑅(r′, 𝑡), (7)

where the non-locality of the potential is treated by the derivative expansion 𝑈 (r, r′) = (𝑉0(𝑟) +
𝑉2(𝑟)∇2 + O(∇4))𝛿(r − r′) in practice. The effective leading order(LO) potential is given by

𝑉LO(𝑟) =

∑
𝑔∈𝑂ℎ

𝑅†(𝑔r, 𝑡)
[
∇2

2𝜇
− 𝜕

𝜕𝑡
+ 1

8𝜇
𝜕2

𝜕𝑡2

]
𝑅(𝑔r, 𝑡)∑

𝑔∈𝑂ℎ
𝑅†(𝑔r, 𝑡)𝑅(𝑔r, 𝑡)

, (8)

where invariance of the potential under the cubic rotation group 𝑂ℎ is utilized to improve sig-
nals [13]. In this study, we further determine the effective next-to-nexto-to-leading order (N2LO) po-
tential to extract resonance parameters more accurately. The effective N2LO potential𝑈N2LO(r, r′) =(
𝑉N2LO

0 +𝑉N2LO
2 ∇2

)
𝛿(r − r′) is determined by [14]:

𝑉N2LO
2 (𝑟) =

𝑉LO
𝜌 (𝑟) −𝑉LO

𝜋𝜋 (𝑟)
∇2𝑅𝜌 (𝑟)/𝑅𝜌 (𝑟) − ∇2𝑅𝜋𝜋 (𝑟)/𝑅𝜋𝜋 (𝑟)

(9)

𝑉N2LO
0 (𝑟) = 𝑉LO

𝜌 (𝑟) −𝑉N2LO
2 (𝑟)∇2𝑅𝜌 (𝑟)/𝑅𝜌 (𝑟). (10)

where 𝑅𝑖 (𝑖 = 𝜌, 𝜋𝜋) are the normalized correlation functions with 𝜌-type and 𝜋𝜋-type source
operators and 𝑉LO

𝑖
(𝑟) (𝑖 = 𝜌, 𝜋𝜋) are the effective LO potentials obtained by 𝑅𝑖 (𝑖 = 𝜌, 𝜋𝜋).

3. Evaluation of correlation functions

Since the P-wave 𝐼 = 1 𝜋𝜋 correlation functions contain quark creation/annihilation diagrams
and momentum projection, we need all-to-all propagators to evaluate them. Previous attempts of
all-to-all calculation using the hybrid method reveal that it introduces large noise contamination
originated from the stochastic estimations of the propagators. Motivated by those lessons, we
have explored an improved treatment of all-to-all propagators and found that the combination of
the one-end trick, the sequential propagator technique, and the CAA can achieve both small noise
contamination and small numerical cost. Here we briefly explain one of the newly introduced tech-
niques, the one-end trick, and outline how we combine them in evaluations of diagrams appearing
in the correlation functions.

3
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3.1 The one-end trick

Let us consider a combination of quark propagators given by∑︁
y

𝑒𝑖p·y𝐷−1(x1, 𝑡1; y, 𝑡0)Γ𝐷−1(y, 𝑡0; x2, 𝑡2), (11)

where𝐷−1 is a quark propagator,Γ is some product of gamma matrices, and 𝑥𝑖 = (x𝑖 , 𝑡𝑖) are arbitrary.
We abbreviate color and spin indices for simplicity. The evaluation of such a combination naively
needs two stochastic estimations for each, since each of them contains two all-to-all propagators. The
one-end trick, however, utilizes the 𝛾5-Hermiticity of the Dirac operator to estimate that structure
with a single noise insertion as follows:∑︁

y
𝐷−1(x1, 𝑡1; y, 𝑡0)Γ𝐷−1(y, 𝑡0; x2, 𝑡2) ≈

1
𝑁r

𝑁r−1∑︁
𝑟=0

𝜉p,𝑡0 [𝑟 ] (x1, 𝑡1) ⊗ 𝜒
†
Γ,𝑡0 [𝑟 ] (x2, 𝑡2)𝛾5, (12)

with the “one-end vectors”

𝜉p,𝑡0 [𝑟 ] (𝑥) ≡
∑︁

y
𝐷−1(𝑥; y, 𝑡0)𝜂 [𝑟 ] (y)𝑒𝑖p·y (13)

𝜒Γ,𝑡0 [𝑟 ] (𝑥) ≡
∑︁

y
𝐷−1(𝑥; y, 𝑡0)𝛾5Γ

†𝜂 [𝑟 ] (y). (14)

The one-end vectors 𝜉 and 𝜒 are obtained by solving the linear equation 𝐷𝜉 = 𝜂𝑒𝑖p·y and 𝐷𝜒 =

𝛾5Γ
†𝜂, respectively. The dilution technique[5] for noise reduction can be combined as well. This

trick is particularly suitable for the HAL QCD method since it does not introduce any stochastic
estimations at the sink side, which otherwise strongly affects spatial dependences of the NBS wave
function. Moreover, a numerical cost and noise contamination are also reduced in accordance with
a decrease in the number of noise vectors.

3.2 Evaluation of diagrams

Figure 1 shows representative diagrams appearing in this study, where the techniques utilized
in evaluations of quark propagators are shown by different colors and symbols. The one-end trick
and the sequential propagator calculation are utilized in the source part of the diagrams. The CAA
is applied to the center-of-mass coordinates between the two-pion operators at the sink part (x in
eq. (2)), which has the translational invariance. At the end of the day, we need at most two insertions
of the stochastic estimators in our calculation and achieve about 10 times smaller statistical errors
than previous attempts using the hybrid method.

4. Numerical result

We employ (2+1)-flavor full QCD configurations generated by the PACS-CS Collabora-
tions [15] on a 323 × 64 lattice with the Iwasaki gauge action[16] and a non-perturbatively im-
proved Wilson-clover action[17]. In this setup, a lattice spacing is 𝑎 ≈ 0.0907 fm and a pion
mass 𝑚𝜋 ≈ 0.41 GeV, where the 𝜌 meson appears as a resonance with 𝑚𝜌 ≈ 0.89 GeV [11]. To
perform the exponential smearing at sink operators, we employ the Coulomb gauge fixing. Table 1

4
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Figure 1: Representative diagrams appear in correlation functions. Blue solid, orange dashed and green
dotted lines are quark propagators calculated by the one-end trick, sequential propagator technique, and
point-to-all propagator, respectively. The CAA is applied to the coordinates x in the box and triangle
diagram.

Table 1: Setups for statistics, the one-end trick and the CAA. 𝑁eig and 𝑁ave is the number of low eigenmodes
and averaged points used in the CAA, respectively. The averaged points are chosen as x = (𝑥0 + 8𝑙, 𝑦0 +
8𝑚, 𝑧0 + 8𝑛) mod 32 for 𝑙, 𝑛, 𝑚 ∈ {0, 1, 2, 3}, with a randomly chosen reference point x0 for each gauge
configuration sample. Color and spinor dilutions are always used for noise vectors in the one-end trick.

Source type 𝑁conf × 𝑁srctime (Stat. error) One-end trick CAA
Noise vector Space dilution 𝑁eig 𝑁ave

𝜋𝜋-type 100 × 64 (jackknife with bin–size 5) 𝑍4 noise 𝑠2 (even-odd) 300 64
𝜌-type 200 × 64 (jackknife with bin–size 10) 𝑍4 noise 𝑠4 300 64

summarizes details of our simulations. Furthermore, to remove the dominant higher partial wave
contamination of 𝑙 = 3 originated from the reduced rotational symmetry, we apply the approximated
partial wave decomposition recently introduced to lattice QCD[18].

4.1 LO and N2LO potentials

Figure 2 (Left) shows the results for effective LO potentials. We observed that the potentials
are attractive at all distances. We also notice that potentials obtained from different source operators
are different from each other, suggesting a presence of non-negligible higher-order contributions in
the derivative expansion. Fig. 2 (Right) gives potentials after the partial wave decomposition with
the P-wave centrifugal term added, which become much smoother as multi-valued structures are
eliminated. The potentials with the centrifugal term show characteristic features for the existence
of a resonance state such as an attractive pocket at short distances and a potential barrier around
𝑟 = 0.5 fm. To evaluate the physical observables, we fit the potentials with a multi-Gaussian shape,
𝑉 (𝑟) = 𝑎0𝑒

−(𝑟−𝑎1)2/𝑎2
2 + 𝑎3𝑒

−(𝑟−𝑎4)2/𝑎2
5 + 𝑎6𝑒

−(𝑟−𝑎7)2/𝑎2
8 . The systematic uncertainty of physical

observables is estimated by the uncertainty of the fits at small 𝑟 .
Next, let us consider the N2LO potentials. The red triangle plots in Fig. 3 (Left) shows the

𝑉N2LO
2 obtained by eq.(9). We observe a singular behavior at 𝑟 ≈ 0.5 fm, which comes from a

vanishing denominator of 𝑉N2LO
2 . In the fit of 𝑉N2LO

2 , we assume that the N4LO or higher-order
contribution in the derivative expansion can be neglected. This assumption leads us to employ a

5
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Figure 2: (Left) Effective LO potentials. Blue and red points show the results from the 𝜌-type source and
the 𝜋𝜋-type source, respectively. Inset shows an enlarged view of potentials. (Right) Improved potentials
obtained by the partial wave decomposition[18] with the P-wave centrifugal term, 𝑉𝑐 (𝑟) = 1

2𝜇
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Figure 3: Effective N2LO potentials. (Left) 𝑉N2LO
2 obtained by the decomposed data (red triangles) and fit

result (green band). (Right) 𝑉N2LO
0 obtained by fit results through the eq.(10).

smooth fit function (same as the LO potentials) and use data points satisfying 1 − 2𝜇𝑉N2LO
2 > 0.

The fit result is shown as a green band in Fig. 3 (Left). We then obtain 𝑉N2LO
0 by combining all

the fit results in eq.(10), which are shown in Fig.3 (Right). Thanks to the new strategy to handle
all-to-all propagators, we succeed in extracting the effective N2LO potential of this system for the
first time.

4.2 Physical observables

Scattering phase shifts obtained by the LO and N2LO potentials are summarized in Fig.4 (Left),
together with the previous result from PACS-CS Collaboration[11]. All of our results show a typical
resonant behavior, rising and crossing 90 degrees. The LO results, however, largely deviate from
the result of Lüscher’s method. It indicates that the LO approximation is insufficient in our setup.
On the other hand, the N2LO result becomes roughly consistent with the PACS-CS result. The
remaining difference between the N2LO and the PACS-CS result observed in the low-energy region

6
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Figure 4: (Left) Scattering phase shift obtained by the LO and N2LO potentials. Lighter color bands show
the systematic uncertainty estimated by the uncertainty of the fits at small 𝑟 . (Right) A comparison of N2LO
resonance parameters and previous result from PACS-CS(2011). Dotted bars give the systematic uncertainty.

can be understood as follows: Our calculations are performed only in the center-of-mass frame,
where the corresponding energy levels on the current lattice volume do not cover the low-energy
region near the 𝜋𝜋 threshold. Therefore, the N2LO approximation could suffer from the large
truncation error of the derivative expansion in such a low-energy region.

Finally, we extract parameters of the 𝜌 resonance using the N2LO potential. We employ two
different procedures, fit of the Breit-Wigner parametrization and direct pole search of the S-matrix.
Extracted parameters are summarized in Fig.4 (Right). The resonance mass 𝑚𝜌 is consistent with
the previous study, but the coupling 𝑔𝜌𝜋𝜋 is twice as large. We suspect that this difference mainly
comes from the discrepancy in a low-energy region as mentioned above. While a resonance mass
is likely to be well reproduced as long as the resonance appears in the energy region accessible in
the center-of-mass frame, the coupling may suffer from larger systematics since it is sensitive to
energy dependence on a much wider range around the resonance. This observation gives us a useful
lesson for the study of P-wave (or higher partial wave) resonances by the HAL QCD method with
the center-of-mass frame. If the non-locality of the potential happens to be large, the truncation
errors could be large at low-energies near the threshold. To control the systematics appearing in
the determination of the effective coupling and decay width, one may, for example, introduce the
laboratory frame calculations in the analysis or tune lattice parameters (box size etc.) to cover an
energy region of a target resonance only by the center-of-mass frame spectra.

5. Summary

We study the P-wave 𝐼 = 1 𝜋𝜋 interaction at 𝑚𝜋 ≈ 0.41 GeV, where the 𝜌 meson appears
as a resonance with 𝑚𝜌 ≈ 0.89 GeV. We newly introduce a combination of the one-end trick, the
sequential propagator technique, and the CAA in the evaluation of correlation functions. Thanks to
those techniques, we successfully determine the HAL QCD potential at the N2LO of the derivative
expansion for the first time and find the pole structure corresponding to the 𝜌 resonance. The
resonance mass is consistent with the previous result by Lüscher’s method, but somewhat larger
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coupling and decay width are obtained. We suspect that this discrepancy comes from the large
systematics in the low-energy region far from the center-of-mass energy spectra, which may be
reduced by, for instance, introducing the laboratory frame calculations. Although there remain
some issues to be investigated, this study shows that we can study hadronic resonances requiring
all-to-all calculations at the N2LO level in the HAL QCD method.
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