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Normalizing flows for the real-time sign problem Yukari Yamauchi

1. Introduction

Lattice calculations have successfully revealed many aspects of quantum chromodynamics
(QCD) by performing non-perturbative calculations of QCD observables in the path integral for-
malism from first principles. However, there are still many kinds of observables yet to be addressed
by lattice QCD due to the so-called sign problem. One setting where a sign problem occurs is in
the calculations of lattice field theories done in Minkowski spacetime. The path integral

𝑍 =

∫
D[𝜙]𝑒−𝑆 (𝜙) (1)

for Minkowski spacetime is defined with a complex-valued action 𝑆. Here 𝜙 represents all lattice
degrees of freedom, and we assume for simplicity that they take values in R𝑁 . As the “Boltzmann
factor” 𝑒−𝑆 is also complex-valued, one cannot simply regard it as a probability distribution of
configurations 𝜙, which is the standard interpretation needed to apply Markov chain Monte Carlo
(MCMC) sampling. One way to get around the problem is to define the so-called quenched
distribution function 𝑒−Re 𝑆 . With this quenched distribution, the expectation value of observables
O(𝜙) on a lattice can be computed as

⟨O(𝜙)⟩ =
∫
D[𝜙] 𝑒−𝑆 O(𝜙)/

∫
D[𝜙] 𝑒−Re 𝑆∫

D [𝜙]𝑒−𝑆/
∫
D[𝜙] 𝑒−Re 𝑆

=
⟨O(𝜙) 𝑒−𝑖Im 𝑆⟩𝑄

⟨𝑒−𝑖Im 𝑆⟩𝑄
, (2)

where ⟨·⟩𝑄 denotes that the expectation values are evaluated with the quenched distribution. Both
numerator and denominator in (2) are numerically challenging to compute; individually, each suffers
from a severe signal-to-noise problem. Consider for example the denominator, termed the average
sign and often denoted as ⟨𝜎⟩. The average sign is (in the presence of a sign problem) strictly less
than 1, and scales exponentially with the volume: ⟨𝜎⟩ ∼ 𝑒−𝑉 . However, each sample is a complex
number of magnitude 1, and therefore the MCMC sampling needs ∼ 𝑒2𝑉 samples to resolve the
average sign from 0. Such a lattice calculation is not scalable for systems of physical interest. This
is the sign problem. A similar issue occurs for many fermionic models, including QCD at non-zero
baryon density.

While there are several proposal for alleviating sign problems proposed, one long-standing
method which successfully tamed sign problems for some models of our interest is the so-called
manifold deformation method [1]. The idea of the method is simple: we deform the contour of
integration is the path integral, R𝑁 to the complex plane C𝑁 of the field variables 𝜙, aiming for
a larger average sign, and thus milder sign problem. When the average sign is exactly 1, the sign
problem is solved — the average sign stays exactly 1 no matter how large the size of the lattice
becomes.

The equality of expectation values before and after a contour deformation is guaranteed [2]
by Cauchy’s integral theorem. To be precise, let M be a contour obtainable by a continuous
deformation of R𝑁 , where the deformation passes only through regions in which both 𝑒−𝑆 (𝜙) and
O(𝜙)𝑒−𝑆 (𝜙) are holomorphic functions of 𝜙. As long as the asymptotic behavior of the contour
does not change, the expectation value ⟨O⟩ evaluated on M will equal the physical expectation
value.

The main result of our paper [3] was that we showed that such perfect manifolds (with average
sign of 1) exist, at least for bosonic theories in Schwinger-Keldysh formalism. In this proceeding,
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we review the argument for the existence of perfect manifolds given in [3] in Section 2, and then
give a separate, new argument in Section 3. Finally, in Section 4, we show how both arguments
fail for specific theories, including fermionic systems at finite density – it remains unclear if perfect
manifolds exist in those cases.

2. Perfect contours from the holomorphic gradient flow

In this section, we review the construction of a perfect manifold described in [3]. One approach
to constructing contours with improved sign problems is via the holomorphic gradient flow [4], in
which we deform the contour by changing each point 𝜙 via the following differential equation with
the flow time 𝑡:

d𝜙
d𝑡

=
𝜕𝑆

𝜕𝜙
. (3)

At each flow time 𝑡, we obtain a new integration contour. The holomorphic gradient flow is often
applied starting from the real axis. In this case, at early flow time, the holomorphic gradient flow is
guaranteed to improve the sign problem, as is discussed in [3]. This can be seen by looking at how
the action changes with flow time:

d𝑆
d𝑡

=

����𝜕𝑆𝜕𝜙 ����2 . (4)

The real part of the action increases, making the denominator of the average sign smaller. In the
meantime, the numerator of the average sign does not change when the contour satisfies the three
conditions discussed above. Thus the overall average sign increases. At later times, the average
sign is not guaranteed to improve due to two additional contributions: the “local" sign problem due
to the Jacobian coming from the deformed contour, and the “global" sign problem due to the zeros
of the Boltzmann factor. In this section, we show how one can in principle obtain a manifold that
is at least locally perfect by erasing the local sign problem.

To construct a locally perfect manifold, we make use of the fact that the holomorphic gradient
flow (3) always improves the average sign right after the manifold flows off the real plane. We flow
the manifold (initially R𝑁 ) for some small time 𝜖 ; this improves the average sign by a little bit. We
then parametrize the new contour by the real plane R𝑁 . This defines a new effective action on R𝑁 ,
which we use to flow the manifold again for time 𝜖 , further improving the sign problem. We repeat
the process many time until a fixed point is obtained — we will see below that such a fixed point
must at least have no local sign problem. In the following, we describe the process in more detail,
and finally discuss the properties of the fixed-point contour.

We start with the action 𝑆(𝜙). As the first step, we flow the original integration manifold R𝑁

with the holomorphic gradient flow, Eq. (3), until the flow time 𝑡 = 𝜖 . All 𝜙 ∈ R𝑁 will be moved
to 𝜙1 ∈ C𝑁 according to

𝜙1(𝜙) = 𝜙 + 𝜖
𝜕𝑆

𝜕𝜙
. (5)

This map 𝜙1(𝜙) defines a new integration contour M1. The new contour M1 is parametrized by
𝜙 ∈ R𝑁 via 𝜙1(𝜙). This parametrization defines the effective aciton 𝑆1:

𝑆1(𝜙) = 𝑆[𝜙1(𝜙)] − log det ©«1 + 𝜖
𝜕

𝜕𝜙

𝜕𝑆

𝜕𝜙

�����
�̄�

ª®¬ . (6)
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Here a serious complication arises. The nice properties of the holomorphic gradient flow stem
chiefly from the fact that the action being used to flow is a holomorphic function; this effective
action 𝑆1, however, is clearly not holomorphic! The situation is remedied by realizing that the
procedure above really only defined 𝑆1 on R𝑁 . We can choose to defined the behavior of the
effective action on C𝑁 any compatible way we like; in particular, we choose it to be the analytic
continuation of the function of the real plane.

Now that 𝑆1(𝜙) is the analytic function of 𝜙 on R𝑁 , we can let the manifold R𝑁 flow via
Eq. (3) again. We obtain a map 𝜙2(𝜙) which defines a new manifold, and again is guaranteed to
improve the sign problem. We repeat the small flow by 𝜖 and the projection back to R𝑁 many times,
improving sign at each step. What will happen after we perform many steps?

When the manifold reaches a fixed point M 𝑓 , after M 𝑓 is projected onto R𝑁 , the next flow
does not move the manifold off of the real plane (although individual points will flow within R𝑁 ).
In other words, its effective action 𝑆 𝑓 (𝜙) satisfies

𝜕𝑆 𝑓

𝜕𝜙
∈ R𝑁 , (7)

except at the singularities of 𝑆 𝑓 . In other words, on the perfect manifold, the effective Boltzmann
factor 𝑒−𝑆 𝑓 (𝜙) has no phase fluctuations:

𝑒−𝑆 𝑓
𝜕Im 𝑆 𝑓

𝜕𝜙
= 0 (8)

So the phase Im 𝑆 is guaranteed to be constant except at singularities of 𝑆 𝑓 on M 𝑓 . Any remaining
sign problem must come from global cancellations between segments of the contour, separated by
zeros of the Boltzmann factor.

We can demonstrate the existence of perfect manifolds in the following “one-site model”
(𝜙 ∈ R):

𝑆 = 𝜙2 + 𝑒𝑖 𝜃𝜙4. (9)

When 𝜃 = 0, the model doesn’t have a sign problem. For a non-zero 𝜃 ∈ R, one can numerically
search for (approximately) perfect manifolds in the complex plane of 𝜙. In Figure 1, we plot
examples of such contours with several choices of 𝜃. Note that the perfect manifold appears to
change continuously as a function of 𝜃.

The argument above suggested only that locally perfect contours exist; meanwhile, Figure 1
and similar numerical experiments in few dimensions suggest the stronger statement that globally
perfect contours are available. We can strengthen the above argument to address globally perfect
contours by making use of the observation that the perfect contour changes continuously as the
action parameters are varied. Specifically, assume the following:

Conjecture. For every continuous family of actions 𝑆𝜆, there is a continuous family of contours
M𝜆 such thatM𝜆 is a locally perfect contour for 𝑆𝜆. Moreover, any contour 𝑀0 which is locally
perfect is part of some such continuous family.

At first glance, this is only a minor assumption on top of the argument given above for
the existence of locally perfect contours. However, by constraining the behavior of locally perfect
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Figure 1: Integration contours with the average sign numerically measured to be ⟨𝜎⟩ > 1 − 10−5 for the
model (9) with various 𝜃.

contours as the action parameters𝜆 are changed, it implies the existence of globally perfect manifolds
for a broad class of actions. In particular, take 𝑆𝜆 to be the Schwinger-Keldysh action for bosons
with a 𝜙4 coupling of 𝜆. When 𝜆 = 0, a globally perfect contour is easily found, as the path integral
is Gaussian. This globally perfect contour is continuously connected to locally perfect contours at
larger 𝜆. However, in the absence of zeros of the Boltzmann factor 𝑒−𝑆 , the act of creating multiple
segments of the contour with different phases is discontinuous. From this we conclude that the
locally perfect contours at finite 𝜆 must in fact be globally perfect.

3. Complex normalizing flows

Another way to view perfect contours is as an analytic continuation of a normalizing flow. A
normalizing flow is a map 𝜙 : R𝑁 → R𝑁 obeying

det
(
𝜕𝜙

𝜕𝑥

)
𝑒−𝑆 (𝜙 (𝑥)) = N𝑒−𝑥 ·𝑥/2. (10)

The normalization constant N is given by the partition function of the physical model, and will
drop out of all equations in this discussion.

When the action is not complex-valued, and has no sign problem, a normalizing flow is
guaranteed to exist [5], and for 𝑁 > 1, is far from unique. Normalizing flows have been successfully
applied in lattice field theory to accelerate the MCMC sampling [6, 7]. The case of a complex-
valued action (a “complex normalizing flow”) is discussed in [3]: in short, such a normalizing flow
yields a perfect contour given by the image of R𝑁 in C𝑁 under the map 𝜙. Thus, for the complex
normalizing flow to exist, a perfect contour has to exist. The converse also holds: when a perfect
contour exists, a normalizing flow (generally far from unique) is also guaranteed to exist.

In fact, not only are perfect contours connected to normalizing flows in the abstract sense of
being normalizing flows “in the complex case”, but individual perfect contours can be obtained
concretely by analytic continuation of normalizing flows, viewed as functions of the action param-
eters. To see how this works, let us consider perturbative normalizing flows of the 𝜙4 scalar theory,
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given by the action:
𝑆 =

∑︁
𝑖 𝑗

𝜙𝑖𝑀𝑖 𝑗𝜙 𝑗 + 𝜆
∑︁
𝑖

Λ𝑖𝜙
4
𝑖 . (11)

Here we fix 𝜆, the magnitude of the strength of the coupling. We consider 𝑀 and Λ as the action
parameters, and will analytically continue a normalizing flow in the space of 𝑀,Λ to obtain a
normalizing flow for a choice of these parameters for the 𝜙4 scalar theory in the Schwinger-Keldysh
model which possesses a sign problem.

As it was detailed in [3], we can solve the differential equation, Eq. (10), for the map 𝜙(𝑥)
in either the weak- or strong-coupling limit analytically. At weak coupling, a normalizing flow is
given by

𝜙weak
𝑖 (𝑥) = 𝑥𝑖 − 𝜆

∑︁
𝑗

[
1
2
𝑀−1

𝑖 𝑗 Λ 𝑗𝑥
3
𝑗 +

3
4
𝑀−1

𝑖 𝑗 𝑀
−1
𝑗 𝑗 Λ 𝑗𝑥 𝑗

]
. (12)

Thus the perturbative flow is the analytic function of the action parameter 𝑀,Λ except at vanishing
det 𝑀 . Perfect contours are obtained by using complex values of 𝑀𝑖 𝑗 and Λ𝑖 . Unfortunately, the
weak-coupling expansion is also an expansion in small 𝜙, and therefore the integration contours
obtained by analytic continuation do not lie in the correct homology class.

To study the behavior of integration contours at large 𝜙, we can also find the perturbative flow
in the strong coupling limit. We will write the map as the sequence of four maps:

𝜙strong(𝑥) = [𝐹4 ◦ 𝐹3 ◦ 𝐹2 ◦ 𝐹1] (𝑥). (13)

Firstly, 𝐹1 : R→ Rmaps 𝑒−𝑥2
𝑖
/2 to 𝑒−𝑥

4
𝑖 for each site 𝑖 . This map has no dependence on 𝑀,Λ. The

second map 𝑦𝑖 = 𝐹2(𝑥𝑖) then maps the distribution 𝑒−𝑥
4
𝑖 to 𝑒−Λ𝑦4

𝑖 via the rotation and rescaling of
the complex plane:

𝐹2(𝑥𝑖) = 𝑥𝑖/Λ1/4
𝑖

. (14)

This map is thus analytic in 𝑀,Λ except at vanishing Λ.
The map ®𝑧 = 𝐹3(®𝑦) then transforms the distribution 𝑒−

∑
𝑖 Λ𝑖𝑦

4
𝑖 to 𝑒−𝑆

′ ( ®𝑧) with

𝑆′(®𝑧) =
∑︁
𝑖

Λ𝑖𝑧
4
𝑖 +

1
√
𝜆

∑︁
𝑖 𝑗

𝑧𝑖𝑀𝑖 𝑗 𝑧 𝑗 . (15)

correctly up to first order in 1√
𝜆
. The perturbative piece 𝛿(®𝑦) of the map 𝑧𝑖 = 𝑦𝑖 + 1√

𝜆
𝛿𝑖 (®𝑦) is

𝛿𝑖 (®𝑦) = 𝑒Λ𝑖𝑦
4
𝑖 𝑀𝑖𝑖

[
−
𝑦3
𝑖
Γ[ 3

4 ,Λ𝑖𝑦
4
𝑖
]

4(Λ𝑖𝑦
4
𝑖
)3/4

+
⟨𝑦2

𝑖
⟩𝑦𝑖Γ[ 1

4 ,Λ𝑖𝑦
4
𝑖
]

4(Λ𝑖𝑦
4
𝑖
)1/4

]
+

∑︁
𝑗∈{𝑖−1,𝑖+1}

𝑒Λ𝑖𝑦
4
𝑖

√
𝜋

4
√
Λ𝑖

[
Erf (

√︁
Λ𝑖𝑦

2
𝑖 ) − 𝐶

]
𝑀𝑖 𝑗 𝑦 𝑗 . (16)

In the expression of the map 𝛿(𝜓), (·)1/4 means that we take the principle fourth root. Regarding
the constant 𝐶, a choice of 𝐶 = 1 gives a map which vanishes at 𝜓𝑖 → ∞ and is oscillation-free.
Finally, the map 𝜙𝑖 = 𝐹4(𝑧𝑖) rescales the complex plane again to obtain the desired distribution
𝑒−𝑆 (𝜙) : 𝐹4(𝑧𝑖) = 𝑧𝑖/𝜆1/4. This map, like the first, has no dependence on 𝑀 or Λ.

Thus, we have found a normalizing flow, in our strong-coupling expansion, is an analytic
function of 𝑀,Λ (except at vanishing Λ). This flow can trivially be used at complex 𝑀,Λ, yielding
perfect contours, again to first order in the expansion.
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4. Boltzmann factor zeros

When a manifold intersects with zeros of the Boltzmann factor (including those at infinity),
the manifold, while locally perfect, may fail to be globally perfect. In the context of normalizing
flows, at the singularities 𝜙(𝑥0) = 𝜙0 where 𝑒−𝑆 (𝜙0) = 0, one of the following has to happen:

1. The Jacobian diverges: det
(
𝜕𝜙

𝜕𝑥

)
𝜙→𝜙0

= ∞ while 𝑥0 stays finite.

2. The map 𝜙 will send the point 𝑥0 to infinity, |𝑥0 | → ∞.

This section is devoted to zeros of the Boltzmann factor that lie away from infinity; in other words,
we will investigate the first case in detail.

A good concrete example is given by the following one-dimensional Boltzmann factor:

𝑒−𝑆𝜖 (𝜃) = cos(𝜃) + 𝜖, 𝜃 ∈ [0, 2𝜋] (17)

The uncomplexified domain of integration is the circle; the corresponding complex space is 𝑆1 ×R.
The parameter of the action, 𝜖 , can be any complex number. A sign problem is already be obtained
for real 𝜖 ∈ (−1, 1); for real 𝜖 outside of this range there is no sign problem. The left-hand panel of
Figure 2 shows the Boltzmann factor for several values of 𝜖 .

For all 𝜖 ∈ R, the real line is a locally perfect contour. When 𝜖 > 1, the zeros do not intersect
this contour, and it is therefore globally perfect. As 𝜖 is lowered, the zeros come down, intersect
the contour for the first time at 𝜖 = 1, and thence create global cancellations when 𝜖 < 1 (but
still positive). For all 𝜖 ∈ R, the locally perfect contour of real 𝜃 is also the best possible contour
available. In other words, when 𝜖 ∈ (−1, 1), there is no globally perfect contour.

Let us now consider normalizing flows for this action. As the action is defined on the finite
range of 𝜃, we choose the normalizing flow to be a map from the distribution Eq. (17) to the uniform
distribution on 𝑥 ∈ [0, 2𝜋); that is, 𝜃 (𝑥) is a solution to

d𝜃 (𝑥)
d𝑥

(cos(𝜃 (𝑥)) + 𝜖)
𝜖

= 1. (18)

The solution is unique up to an arbitrary shift of 𝜃 (or equivalently of 𝑥). The inverse of such a map
𝜃 (𝑥) for real 𝜖 > 1 is

𝑥(𝜃) = (sin(𝜃) + 𝜖𝜃) /𝜖 . (19)

In the right panel of Figure 2, the map 𝑥(𝜃) with 𝜖 = 1.5 is shown. Now, we lower 𝜖 towards 1.
We find that when 𝜖 = 1, at 𝜃 = 𝜋 where the Boltzmann distribution vanishes, the Jacobian d𝜃/d𝑥
diverges such that Eq. (18) holds. Now, we keep lowering 𝜖 and get into the regime with a sign
problem: here, the flow 𝜃 (𝑥) is no longer single-valued, reflecting the fact that there is no globally
perfect contour.

We can also consider what happens at complex 𝜖 . Here, both the (locally) perfect contour and
the zeros move simultaneously. Figure 3 shows the values of 𝜖 in the complex plane for which the
zeros intersect the locally perfect contour. In the interior of this region, no globally perfect contour
exists. The boundary of this region and its exterior correspond to values of 𝜖 with well-behaved
normalizing flows and therefore globally perfect contours of integration.
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Figure 2: The left panel: The Boltzmann factor Eq. (17) with 𝜖 = 1.5, 1.0, 0.5. The right panel: the
normalizing flow 𝑥(𝜃) with 𝜖 = 1.5, 1.0, 0.5.

Figure 3: The region of 𝜖 , in the first quadrant of the complex plane, for which the Boltzmann factor (17)
lacks a globally perfect contour.

The study of Boltzmann factors with zeros is motivated by the case of the finite-density
fermion sign problem, where the practice of integrating fermions out yields precisely these sorts of
singularities of the action. In [3] it was shown that for a simplified (mean-field) model of lattice
fermions in any number of space-time dimensions, perfect contours do not exist at finite chemical
potential. However, neither the discussion above nor that primitive example are sufficient to rule
out the existence of perfect contours for realistic lattice fermions. Whether or not such contours
exist remains an important open question.
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