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Simulations for the thermodynamics of the 2+1 flavor QCD are performed employing chiral
fermions. The use of Möbius domain-wall fermions with stout-link smearing is more effective on
the finer lattices where all the relevant chiral symmetries are realized more accurately. We report
on the initial simulations near the (pseudo) critical point using the line of constant physics with
an average D3 quark mass slightly heavier than physical at 0 . 0.1 fm.
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1. Introduction

Nature of the phase transition of 2 + 1-flavor QCD is a prime interest as it provides a good
approximation of what happens in the real world when the temperature gets high enough to liberate
the quark degree of freedom. Especially the “physical point” simulations, where the degenerate D3
quark mass is set as their average physical value and strange quark mass is tuned to physical, are
useful and have direct relevance for the understanding of the history of the universe and physics in the
heavy ion/high energy experiments. These days there have emerged much interests in investigating,
not only the physical point, but also extended region like fictitious D3 chiral limit. More in general,
the phase structure of the Columbia plot is getting match attention [1–3].

Here we report on the newly started project aiming to study the thermodynamics near the
physical point in the Columbia plot using a chiral fermion formulation. There was a study by
HotQCD collaboration using domain-wall fermions at a course lattice (with the temporal extent
#C = 8) [4]. In the studies by JLQCD for 2-flavor (# 5 = 2) QCD [5–7] it is shown that the fine
lattice simulations are indispensable to maintain the underlining symmetries (* (2) and* (1) chiral,
especially to study the fate of * (1)�. To understand the phase structure near the D3 chiral limit
it would be important have good control of these symmetries as the fate of the symmetries could
change the order of the transition [8]. This made us plan the # 5 = 2+1 flavor simulations using the
same setup as # 5 = 2, which uses Möbius domain-wall fermions [9] (scale-factor-2 Shamir-type
fermions) with the stout-link smearing in the Wilson kernel. Some # 5 = 2+ 1 studies have already
been done following the same strategy as # 5 = 2 where the gauge coupling is fixed and the “ud”
mass is changed. The preliminary results have been reported in this conference [10]. Yet another
project using the same action, but with a line of constant physics to change only the temperature,
has been started.

In this report, our main focus is to discuss how we obtain and use the line of constant physics
of the action we use for the # 5 = 2 + 1 QCD. In these studies we fix the domain-wall fermion
parameters: the domain-wall height as "5 = 1 as usual in JLQCD and the 5th dimension size as
!B = 12. After discussing these setup, some early and preliminary results are shown.

2. Scale setting and line of constant physics

We would like to express the lattice spacing and physical strange quark mass point as functions
of the gauge coupling V: 0(V) and <B (V), where the latter is the strange quark mass in the lattice
action. The ratio of strange and average D3 quark mass is known and we can obtain the lattice
<D3 (V) using the ratio.

2.1 Lattice spacing

We restrict the lattice spacing to be used in this finite temperature study not to be far away from
the region used in the zero temperature JLQCD studies. These include the coarsest lattices generated
only for an unpublished pilot study 0 ' 0.095 fm, as well as finer lattices: 0 ' 0.08, 0.055, 0.044
fm. These lattice spacings are determined using C0. In this way we can avoid performing expensive
extra zero temperature simulations as much as possible. The left panel of Fig. 1 shows the results
of the lattice spacing.
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Figure 1: Lattice spacing as a function of V (left) and lattice spacing divided by two-loop scaling as a
function of an effective lattice spacing squared (right).

There is a method often used to parameterize the lattice spacing as a function of the gauge
coupling using two-loop beta function with correction terms proposed by Edwards et al [11],

0 = 20 5 (62) (1 + 220̂(6)2 + 240̂(6)4). (1)

where

0̂(6) ≡ 5 (62)
5 (62

0)
, (2)

5 (62) ≡ (106
2)−11/212

0 exp
(
− 1

21062

)
, (3)

10 =
1
(4c)2

(
11 − 2

3
# 5

)
, 11 =

1
(4c)4

(
102 −

38# 5
3

)
, (4)

62 = 6/V, # 5 = 3, 20, 22 and 24 are free parameters of the fit. We set the reference gauge coupling
60 from the V value of the second finest lattice 62

0 = 6/4.35. 5 (62) expresses the scaling from
the two-loop beta function, which is scheme independent. Beyond two loop, scheme dependence
appears and is not convenient for this purpose. The 22 and 24 terms are meant to absorb the lattice
discretization error. But, in practice they are also playing the role of absorbing the remnant RG
scaling beyond two loop, which can be seen in the right panel of Fig. 1, where 0/ 5 (62) is plotted
as a function of 0̂2. The variation from 11 to 14 is too large to be regarded as a discretization error
for domain-wall fermions at 0 < 0.1 fm. Apart from the role of each terms one wants to check the
effectiveness of the formula by looking at this figure. If the linearity is good one does not have to
include 0̂4 term in Eq. 1 to parameterize the lattice spacing. While it turns out that the linearity
is marginally good, the fit (shown as dashed line) results in large j2/3> 5 = 6.6. Therefore, we
shall adopt the parameterization using up to 0̂4 (shown as solid line) which gives j2/3> 5 = 1.6.
Resulting 0(V) parameterizations have been shown in Fig. 1.

The simulation range for our coarser lattice include V = 4.0 as the lower edge. The 0(V)
there is an extrapolation and has up to a few percent systematic uncertainty, estimated through an
experiment of omitting the coarsest data to check how the two fits work at the coarsest data point.
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2.2 Quark mass

The values of strange and average up, down quark masses are known to a good precision. To
obtain the line of constant physics given the parameterization of the lattice spacing 0(V) in the
previous subsection, we use the strange quark mass input using the relation,

<'@ = /<<
;0CC
@ · 0−1(V), (5)

where<'@ is the dimension-full renormalized quark mass of flavor @. We shall useMS scheme at the
renormalization scale ` = 2 GeV for the renormalization constant /<. Once a parameterization of
the quark mass renormalization factor /<(V) is obtained,<;0CC@ (V) (multiplicatively renormalizable
mass in lattice units) may be computed. This is a method alternative to the commonly-used hadron-
mass input.

We shall use the following numbers for the quark masses for the # 5 = 2 + 1 physical point:

<'B = 92 MeV (6)
<'B /<'D3 = 27.4, (7)

based on the FLAG2019 averages [12]: <'B = 92.0(1.1) and <'B /<'D3 = 27.42(12).
To determine the bare quark mass <@ in the domain-wall fermion action, the residual mass

<A4B due to a finite 5th dimension needs to be subtracted,

<;0CC@ = <@ + <A4B . (8)

For V ≥ 4.17 1 the residual mass is <A4B . 1 MeV, which is about the same size of the error in <'B .
Therefore we can safely neglect the effect of <A4B for the strange quark mass there. The physical
D3 quark mass is larger than the residual mass, <'

D3
> <A4B. However, the size is comparable as

we will see below.
We use /< obtained for the three finer lattice spacings [13] and parameterize that as a smooth

function of V. Fig. 2 shows the measured /< and its parameterization /<(V) using a method
described below.

Let us first determine /< at the scale ` = 0−1 run from ` = 2 GeV, expecting the large log
effect (log(0`)) is removed. The RG running is performed using NNNLO [14] in MS scheme.
Resulting /<(0−1), which are shown as red squares, have less V dependence. This /<(0−1) may
well be expressed in a polynomial of 62 with /<(0−1) → 1 in the continuum limit

/<(0−1) = 1 + 2̂16
2 + 2̂26

4 + · · · . (9)

Therefore we adopt a fit which is an expansion in V−1,

/<(0−1) = 1 + 21V
−1 + 22V

−2. (10)

The fit result is shown as a brown dashed line. From this result one can obtain /<(2 GeV) at
arbitrary V values by applying the NNNLO running, which are shown as a green solid line obtained
with the 0(V) parameterization with Eq. (1).

1V = 4.17 is expected to be in the transition region of the #C = 16 lattice at physical quark masses.
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Figure 3: Line of constant physics for <;0CCB (left). Line of constant physics for <;0CCB , 0.3<;0CCB , 0.1<;0CCB

and <;0CC
D3

in comparison with the residual quark mass (right).

Using the parameterizations 0(V) and /<(V) and the inputs Eq. (7) <;0CCB (V) is determined
and plotted in the left panel of Fig. 3. The right panel shows that with log-y scale, together with
<;0CC
D3
(V) determined from <;0CCB (V) with Eq. (7), as well as U<;0CCB with U = 0.3 and 0.1. The

residual quark mass computed on the three ensembles are also shown. 2

3. Early results

In this section some early and preliminary results are shown. We use the scale setting and line
of constant physics obtained in the previous section to simulate finite temperature QCD with fixed
quark masses in physical unit and with varying temperature.

2The <A4B data are of (V, <B , <D3) = (4.10, 0.039, 0.012), (4.17, 0.04, 0.007), (4.35, 0.018, 0.0042). The first one
is newly computed and the others are from Ref. [15].
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Figure 5: Variance of the iteration count of conjugate gradient for the light quark solver in the molecular
dynamics at #C = 12 as a function of temperature.

We adopt temporal size #C = 12 and 16. The temperature - V trajectories of interest are shown
in Fig. 4.

The strange quark mass is always tuned as physical (Eq. (7)). The simulated average D3 quark
mass is set as one tenth of the strange for the moment (<; = <B/10). Note that for now we neglect
the effect of <A4B. The effect will be larger for coarser lattices and for smaller quark masses with a
fixed !B.

Figure 5 shows the variance of the iteration count of conjugate gradient for the light quark
solver in the hybrid Monte Carlo simulations at #C = 12. As a first step we have chosen rather small
aspect ratio of spatial and temporal lattice sizes as #B/#C = 2. It develops a peak around ) ' 170
MeV, which turns out to be consistent with the observation in a pilot study with fixed V = 4.17
and varying <;. This quantity may be used as an indicator of the transition as it should have a
correlation with the fluctuation of physical quantities. It is useful in pinning down the transition
region prior to performing various measurements on the configurations.

Figure 6 plots the topological susceptibility at #C = 16 computed using a gluonic definition
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Figure 6: Topological susceptibility as a function of temperature for #C = 16 and with the line of constant
physics, <; = <B/10.

with a cooling using the Wilson flow. Horizontal lines indicate the central value and error in the
zero temperature [16]. At the low temperature region in this figure the <A4B effect is getting sizable
as this quantity is sensitive to the change of the quark mass. The correction due to the <A4B effect
is important in this region, which is yet to be determined.

4. Summary and Outlook

In this article a status report was provided on the systematic investigation of the 2 + 1-flavor
finite-temperature QCD transition usingMöbius domain-wall fermions at fine lattices up to #C = 16.
The line of constant physics has been determined, with which a series of simulations have been
performed aiming to get physics at the D3 quark mass being one tenth of the strange ((a) and (c)
regions in Fig. 4). Various measurements of the fermionic observables are now underway, which
will be used to determine the (pseudo) critical point and related physics around that. Understanding
the size of <A4B around V = 4, which is the lower edge of our finite temperature simulations, and its
correction to the physical quantities are important especially for the coarser lattice (#C = 12). With
that further study with lowering the light quark mass will be sought, using on-going simulations in
the range (b) in Fig. 4.
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