
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
8
9
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We present the results that are necessary in the ongoing lattice calculations of the unpolarized
and polarized gluon parton distribution functions (PDFs) within the pseudo-PDF approach. We
give a classification of possible two-gluon correlator functions and identify those that contain
the invariant amplitude determining the gluon PDF in the light-cone z2 → 0 limit. One-loop
calculations have been performed in the coordinate representation and in an explicitly gauge-
invariant form. We made an effort to separate ultraviolet (UV) and infrared (IR) sources of
the ln

(
−z2)-dependence at short distances z2. The UV terms cancel in the reduced Ioffe-time

distribution (ITD), and we obtain the matching relation between the reduced ITD and the light-
cone ITD. Using a kernel form, we get a direct connection between lattice data for the reduced
ITD and the normalized gluon PDF.
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1. Introduction

Lattice calculations of parton distribution functions (PDFs) are now a subject of considerable
interest. Modern efforts aim at the extractions of PDFs f (x) themselves rather than their xN

moments. On the lattice, this may be achieved by switching from local operators to equal-time
correlators [1–4]. We use the pseudo-PDF approach [4], which is coordinate-space oriented, and
parton distributions are extracted there by taking the short-distance z3 → 0 limit.
Since the z3 → 0 limit is singular, one needs matching relations to convert the Euclidean lattice data
into the usual light-cone PDFs. Our goal is to outline the pseudo-PDF approach to the extraction
of unpolarized gluon PDFs, and also to find one-loop matching conditions.
In the gluon case, the calculation is complicated by strict requirements of gauge invariance. In this
situation, a very effective method is provided by the coordinate-representation approach of Ref. [5].
It is based on the background-field method and the heat-kernel expansion. It allows, starting with
the original gauge-invariant bilocal operator, to find its modification by one-loop corrections. The
results are obtained in an explicitly gauge-invariant form.

2. Matrix elements

2.1 Unpolarized case

The spin-averagedmatrix element for operators comprised of twogluonfieldswith uncontracted
indices is Mµα;νβ (z, p) ≡ 〈p|Gµα (z) [z, 0]Gνβ (0) |p〉 ,where [z, 0] is the standard straight-line
gauge link in the adjoint representation. Accounting for the antisymmetry of Gρσ with respect
to indices, and the available four-vectors p, and z, the decomposition of the matrix element into
invariant amplitudes is:

Mµα;νβ(z, p) =
(
gµνgαβ − gµβgαν

)
Mgg(ν, z2)

+
(
gµνpαpβ − gµβpαpν − gανpµpβ + gαβpµpν

)
Mpp(ν, z2)

+
(
gµνzαzβ − gµβzαzν − gανzµzβ + gαβzµzν

)
Mzz(ν, z2)

+
(
gµνzαpβ − gµβzαpν − gανzµpβ + gαβzµpν

)
Mzp(ν, z2)

+
(
gµνpαzβ − gµβpαzν − gανpµzβ + gαβpµzν

)
Mpz(ν, z2)

+
(
pµzαpνzβ − pαzµpνzβ − pµzαpβzν + pαzµpβzν

)
Mppzz(ν, z2) , (1)

where ν = −p · z is the Ioffe time[6]. The light-cone distribution is obtained from
gαβM+α,+β (z, p), where z is taken to be in the “minus” direction z = z−, so:

gαβM+α,β+ (z−, p) = −2p2
+Mpp

(
ν, z2

)
, (2)

thus the PDF is determined byMpp:

−Mpp (ν, 0) =
1
2

∫ 1

−1
dxe−ixνx fg (x) . (3)

The procedure is then to take projections of the matrix element that contain theMpp structure, and
little of anything else. The projection that best meets this condition is M0i;i0, whose decomposition
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is M0i;i0 = 2Mgg + 2p2
0Mpp . We can remove the contaminating Mgg structure by adding the

projection Mi j;ji, whose decomposition is Mi j;ji = −2Mgg .

While all projections of the matrix element are individually multiplicatively renormalizable [7],
they won’t necessarily carry the same anomalous dimension; however, this addition works because
both projections, M0i;i0 and Mi j;ji, have the same anomalous dimension at one loop.

2.2 Polarized case

With polarized gluonswe have thematrix element comprised of a gluon field strength tensor and
a dual field strength tensor: mµα;νβ (z, p) ≡ 〈p, s |Gµα (z) [z, 0]G̃µβ (0) |p, s〉, where the dual tensor
is defined by G̃µβ ≡

1
2εµβρλGρλ. Taking the z-odd combination Mµα;νβ (z, p) ≡ mµα;νβ (z, p) −

mµα;νβ (−z, p), we perform a similar decomposition into invariant amplitudes, and find that the LC
helicity distribution is defined by:

gαβ M̃+α;β+ (z−, p) = −2p+s+
[
M
(+)
ps (ν, 0) − νMpp (ν, 0)

]
(4)

where s+ is related by sµ = mSµ to the usual gluon polarization vector Sµ, andM(+)ps ≡ Mps +Msp.
In the case of pseudodistributions, a promising combination of projections on this matrix

element is M̃0i;i0+ M̃ji;i j , whose decomposition is 2p3p0[M
(+)
ps

(
ν, z2)− (

1 + m2/p2
3
)
νMpp

(
ν, z2)].

For p3 →∞, this result approaches the decomposition structure in the LC case.

3. One-loop corrections

3.1 Link self energy and ultraviolet divergences

The link self energy correction, given by

g2Nc

8π2

Γ (1 − εUV )
(
−z2µ2

UV + iε
)εUV

(2εUV − 1) εUV
Gµα (z)Gνβ (0) , (5)

should, in principle, be zero on the light-cone. However, this result contains linear (εUV = 1/2) and
logarithmic (εUV = 0) UV poles and a singularity on the light-cone z2 = 0 after expansion in εUV .
In order to account for this, we explicitly separate the z2 dependence generated by the UV singular
terms and those in the QCD (or DGLAP ) evolution logarithms ln

(
−z2µ2

IR

)
.

Figure 1: Self-energy-type correction for the gauge link and vertex diagrams with gluons coming out of the
gauge link.
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3.2 Vertex contributions

When one uses the background-field technique, with gluon propagator in the background-
Feynman (bF) gauge [8], the three-gluon vertex differs from the usual Yang-Mills vertex. Therefore,
the Feynman diagrams we use do not correspond one-to-one with the usual Feynman diagrams. A
consequence of this is, where one would have two linear UV divergences that cancel after addition
of two diagrams, in our case that same divergence cancels implicitly. This can be seen from the
evolution part of the vertex correction:

g2Nc

8π2
Γ (d/2 − 2)

(d − 3)
(
−z2)d/2−2

∫ 1

0
du

[
u3−d − 1

]
+

Gµα (ūz)Gνβ (0) , (6)

where the linear divergences present in the “u3−d” part and the “−1” part cancel.
The full uncontracted vertex calculation contains also a UV divergent and constant part, however
this term is zero for the M0i;i0 and the Mi j;ji projection.

3.3 Box and self-energy contributions

The “box” correction is free of UV divergences, but gives a more complicated structure, gen-
erating a mixture of different operators corresponding to different projections of Gµα (ūz)Gνβ (0).
The full uncontracted result is too long for this paper, but it should be noted that the DGLAP part
does not have the necessary plus-prescription form. To get it, one should add the contribution of the
gluon self-energy diagrams. The relevant part of the result is the coefficient to theMpp structure,
2
(
−u3 + u2 − 2u + 1

)
, which integrates to 1/6.

Figure 2: Box diagram and gluon self-energy-type insertions into the right leg.

The self-energy diagrams contain both UV and collinear divergences that generate logarithmic term
ln

(
µ2
IR/µ

2
UV

)
. In order to obtain the necessary plus prescription with the “box” diagram, one can

separate this term into the difference ln
(
z2

3µ
2
IR

)
− ln

(
z2

3µ
2
UV

)
.

The self-energy result is

g2Nc

8π2
1

2 − d/2

[
2 −

β0
2Nc

]
Gµα (z)Gνβ (0) , (7)

where β0 = 11Nc/3 in gluodynamics, and 1
2−d/2 is to be replaced by ln

(
z2

3µ
2
IR

)
− ln

(
z2

3µ
2
UV

)
.

Substituting in the value of β0, we get 1/6, giving us the needed plus-prescription.

3.4 Polarized case

Because the one-loop calculationwas performed at the operator level with uncontracted indices,
the results for Gµα (z) G̃ρσ (0) can be easily obtained by contracting the previous results from this
section with 1

2ε
νβ

ρσ . The DGLAP evolution structure and matching relation for the polarized
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gluon pseudodistribution will be given in an upcoming paper. Here, we just list the results of the
M̃0i;i0 + M̃ji;i j combination:

M̃0i;i0(z, p) + M̃ji;i j(z, p)

→
g2Nc

8π2
16
6

(
1
εUV
+ log

(
z2

3eγ
)) (

M̃0i;i0(z, p) + M̃ji;i j(z, p)
)

+
g2Nc

8π2

∫ 1

0
du

{
4δ(ū) − 2ūu + 2

(
1
ū
− ū

)
+

−

[
4u
ū
+

4 log(1 − u)
ū

]
+

+

(
1
εIR
− log

(
z2

3eγ
)) [{

4uū + 2
[
u2/ū

]
+

}
−

1
2

(
β0
Nc
+ 6

)
δ(ū)

]}
×

(
M̃0i;i0(uz, p) + M̃ji;i j(uz, p)

)
(8)

4. DGLAP evolution structure, unpolarized case

4.1 Reduced Ioffe-time distribution

In order to handle the link and self-energy UV divergences, we use the reduced ITD:

M
(
ν, z2

3

)
≡
Mpp

(
ν, z2

3
)

Mpp

(
0, z2

3

) . (9)

Thismethodworks because our operator ismultiplicatively renormalizable, and because theDGLAP
evolution logarithm drops out ofMpp

(
0, z2

3
)
, so we’re only and entirely removing the non-DGLAP

related z3 dependence.

4.2 Matching relations

Combining the one-loop gluon corrections, and the gluon-quark mixing term (that contains
the gq evolution kernel Bgq (u) = 1 + (1 − u)2 ) , we obtain the matching relation (excluding higher

Figure 3: Gluon-quark mixing diagram.

twist terms, or rather keeping onlyMpp):

M(ν, z2
3)Ig(0, µ

2) = Ig(ν, µ
2) −

αsNc

2π

∫ 1

0
duIg(uν, µ2)

{
ln

(
z2

3µ
2e2γE /4

)
Bgg(u)

+4
[
u + log(ū)

ū

]
+

+
2
3

[
1 − u3]

+

}
−
αsCF

2π
ln

(
z2

3µ
2e2γE /4

) ∫ 1

0
dw

[
IS(wν, µ

2) − IS(0, µ2)
]
Bgq(w) , (10)
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where M(ν, z2
3), the reduced ITD, is our “lattice function”, and Ig(ν, µ2) and IS(uν, µ2) are the

light-cone ITDs. The gluon Altarelli-Parisi kernel is given by

Bgg(u) = 2
[
(1 − ūu)2

ū

]
+

. (11)

The gluon light-cone ITD can be directly related to the light-cone PDF through

Ig

(
ν, µ2

)
=

1
2

∫ 1

−1
dxeixνx fg

(
x, µ2

)
. (12)

Because x fg
(
x, µ2) is an even function of x, the real part of Ig

(
ν, µ2) is given by the cosine

transform of x fg
(
x, µ2) , while the imaginary part vanishes.

The factor Ig
(
0, µ2) = 〈x〉µ2 is the fraction of the hadron momentum carried by the gluons. It

should be found from an independent lattice calculation (see, e.g. [9]).
The matching relation can be cast into a new kernel form in terms of the light-cone PDFs:

M(ν, z2
3) =

∫ 1

0
dx

x fg
(
x, µ2)
〈x〉µ2

Rgg

(
xν, z2

3µ
2
)
+

∫ 1

0
dx

x fS
(
x, µ2)
〈x〉µ2

Rgq

(
xν, z2

3µ
2
)
, (13)

where

Rgg

(
y, z2

3µ
2
)
= cos y −

αsNc

2π

{
ln

(
z2

3µ
2e2γE /4

)
RB(y) + RL(y) + RC(y)

}
, (14)

and

Rgq

(
y, z2

3µ
2
)
= −

αsNc

2π
ln

(
z2

3µ
2e2γE /4

)
RB(y) (15)

The various R terms are given by cosine transformations of the gluon kernel, log term, constant
term, and mixing kernel, and are all perturbatively calculable expressions.
Using lattice data and models for fg(x, µ2) and fS(x, µ2), one can fit their parameters and αs.

5. Conclusion

Wepresented the results of the calculations necessary in the ongoingwork to extract unpolarized
gluon PDFs from the lattice using the method of pseudo-PDFs, and provide an update on the soon
to be released results for the polarized case. Specifically, we demonstrated M0i;i0 + Mi j;ji to be
the most promising combination of matrix elements for obtaining the unpolarized gluon PDF, and
M̃0i;i0 + M̃ji;i j to be the likely combination for obtaining the gluon helicity PDF. We gave the
matching relations, in the unpolarized case, between the reduced pseudo-ITD and the light-cone
ITD or light-cone PDF, demonstrating that lattice data and light-cone PDFs can be directly related.
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