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1. Introduction

The interquark potential of quarkonia is one of the first quantities studied in the quest for a
deeper understanding of the nature of the strong interaction. Pioneering studies include [1] where
the Cornell potential was used to calculate the spectrum of charmonium states using a Quantum
Mechanical formalism. In thermal QCD, the temperature dependence of the interquark potential
results in quarkonium states melting at different temperatures [2]. These considerations strongly
motivate a study of the thermal behaviour of the quarkonia interquark potential.

Heavy quarks interacting via QCD can be approximated using the non-relativistic approach,
NRQCD,which allows a significant simplification. NRQCDcalculations of bottomonia are typically
accurate at the few percent level. In this work we use NRQCD to determine the interquark potential
in bottomonia using the HAL QCD approach. Correlation functions of bottomonia operators are
studied where the quark and antiquark are non-local, and this allows a proxy for the wavefunction to
be calculated. Using this wavefunction in the Schrödinger equation leads to the interquark potential.
We find indications of the weakening of the potential as the temperature increases, as expected.
This work extends previous studies of the interquark potential by the FASTSUM Collaboration in
the charmonium system [3, 4].

2. NRQCD correlation functions and lattice setup

NRQCD is an effective theory with a power counting in the heavy quark velocity, E. In this
theory, the heavy quark and antiquark fields decouple and so virtual heavy quark-antiquark loops
cannot form. The NRQCD quark propagator is calculated via an initial value problem, rather than
via a matrix inversion as is the case for relativistic quarks. NRQCD is particularly amenable for
lattice simulations because mesonic correlation functions do not have “backward movers” which
complicate the study of QCD mesons.

Our NRQCD formulation incorporates both O(E4) and the leading spin-dependent corrections.
The 1-quark mass is tuned by setting the “kinetic” mass (i.e. from the dispersion relation) of the
spin-averaged 1( states to its experimental value. Full details of our NRQCD setup appear in [5].

All our resultswere obtained using our FASTSUM# 5 = 2+1flavour “Generation 2” ensembles
which have the parameters listed in Table 1.

#g 16 20 24 28 32 36 40
T [MeV] 352 281 235 201 176 156 141

#configurations 1050 950 1000 1000 1000 500 500

Table 1: An overview of the FASTSUM Generation 2 correlation functions used in this work. Lattice
volumes are (240B)3 × (#g0g) with 0B = 0.1227(8)fm and 0g = 35.1(2)am. For these ensembles with a
pion mass of "c = 384(4)MeV, the pseudo-critical temperature Tpc = 181(1)MeV [6].

3. HAL QCD Method

We follow the HAL QCD time-dependent method to extract the interquark potential [7, 8].
A key quantity for the HAL QCD method is the Nambu Bethe Salpeter (NBS) wave function,

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
6
9

Thermal interquark potentials for bottomonium Thomas Spriggs

k8 (r) = 〈0|� (r) |8〉, i.e. the overlap of the non-local mesonic operator � (r) between the vacuum and
the bottomonium state |8〉. The mesonic operator � (r) is defined

�Γ(G; r) = &(G)* (G, G + r) Γ&(G + r)

and thus probes the bottomium state with a displacement of r between its two constituent quarks. Γ
is a Dirac matrix chosen to have the desired quantum numbers appropriate for either the Υ (Γ = W8)
or [1 (Γ = W5) states, and* (G, G + r) is the gauge connection between G and G + r.

We calculate the zero-momentum correlation function

�Γ(r, g) =
∑

x
〈�Γ(x, g; r)�†

Γ
(0; 0)〉 =

∑
8

k8 (r)k∗8 (0)
2�8

4−�8 g =
∑
8

Ψ8 (r)4−�8 g .

The sum over states 8 is the usual spectral representation, and for convenience we’ve defined

Ψ8 (r) =
k8 (r)k∗8 (0)

2�8
.

Since we are treating the bottom quark nonrelativistically, we can assume that Ψ8 (r) obeys the
time independent Schrodinger equation in Euclidean space-time,(

− ∇
2
A

2`
++Γ(A)

)
Ψ8 (r) = �8Ψ8 (r),

where +Γ(A) is the interquark potential for the channel Γ, ` is the reduced mass, and we restrict to
S-wave states. Since the correlation function, � (g), is a linear combination of Ψ8 (r), we find that
it satisfies the Schrödinger equation,(

− ∇
2
A

2`
++Γ(A)

)
�Γ(r, g) = −

m�Γ(r, g)
3g

. (1)

We use eq(1) to extract the potential, +Γ from �Γ(r, g). We note that the NRQCD case considered
here has a particularly simple form because there are no backward movers. This contrasts with the
relativistic case where there are backward movers which need to be considered [3, 4].

We use finite derivatives to approximate the Laplacian and the temporal derivative. Because
we consider (-wave states with rotational symmetry, the Laplacian in spherical coordinates can be
approximated by

∇2
A 5 (A) =

m2 5

mA
+ 2
A

m 5

3A
≈

(
5 (A + 0B) − 2 5 (A) + 5 (A − 0B)

02
B

+ 5 (A + 0B) − 5 (A − 0B)
A0B

)
. (2)

The time derivative is similarly approximated by
m 5

mg
≈

(
5 (g + 0g) − 5 (g − 0g)

20g

)
. (3)

Using the leading order terms in the velocity expansion of the interquark potential for (-wave
states [9], the central potential can be defined in terms of the potential from the pseudoscalar (i.e.
the [1) and vector (Υ) channels’ potentials,

+2 (A) =
1
4
+PS(A) +

3
4
+V(A). (4)

The spin-dependent potential is also accessible to us from these two channels, but is not considered
here. Higher order terms in the potential such as the spin-orbit term are also not studied because
they require channels with orbital angular momentum.
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4. Results

4.1 Derivatives

We begin by separately studying the spatial and temporal derivatives in eq(1). Figure 1
shows the spatial derivative, i.e. the kinetic contribution for the Υ at two indicative temperatures,
) = 141MeV (left) and ) = 352MeV (right). For both temperatures the g dependence becomes
more noticeable at larger A , as does the size of the statistical errors. The increase in noise at larger A
is to be expected for point-split lattice correlation functions since points close together are correlated
and so fluctuations increase with A .

Figure 1: The kinetic (i.e. spatial derivative) contribution to the Υ potential plotted against imaginary time
for ) = 141MeV (left) and ) = 352MeV (right). For both temperatures the noise increases with distance,
A/0B . The ) = 352MeV data shows larger variation and the axis scale is adjusted to reflect this.

Figure 2: The temporal derivative contribution to the Υ potential plotted against imaginary time for
) = 141MeV (left) and ) = 352MeV (right).

In Fig. 2 we show the temporal derivative term from eq(1) for the same two temperatures.
This again shows the variation with A , although this is less than in the spatial derivative case. We
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also note that there is a plateau at large g visible for the ) = 141MeV case. This is to be expected,
because at large g, the time derivative asymptotes to the ground state mass.

Comparing the two derivative from figs.1 & 2, we see that the spatial derivative is numerically
larger.

4.2 Potentials for the [1 and Υ Channels

We combine the spatial and temporal derivatives for the [1 and Υ channels in eq(1) to obtain
the the potentials for those channels, +[1 and +Υ. The Υ case is plotted in fig.3. Note +[1 and +Υ
are explicit functions of g in the time-dependent HAL QCDmethod, due to the way these potentials
are derived. Ideally, they should be constant functions w.r.t. g, but as can be seen from fig.3, this is
not the case, except at large g, or for small A . We will investigate this g-dependency in future work
by considering lattice derivatives which are more sophisticated than those in eqs(2) & (3). We note
that the results have the smallest systematics for small A values. We obtain our final estimate of the
each channel’s potential by averaging over a time window as discussed in the next section.

Figure 3: The Υ potential plotted against imaginary time for ) = 141MeV (left) and ) = 352MeV (right).

4.3 Central Potential

We average the potentials for the [1 and Υ channels over the time interval g ∈ [g1, g2] (as
discussed below) and then combine them to obtain the central potential, +� (A) using eq(4). Figure
4 plots +� (A) for all temperatures studied (see Table 1). Due to the periodic boundary conditions
in the spatial direction, there are only 13 distinct lattice points in the spatial direction. However, the
noise grows too quickly for points A > 70B to be considered.

Our aim is to determine the interquark potential as a function of temperature. In order to
disentangle possible systematic effects from thermal effects, we use the same time window [g1, g2]
for neighbouring temperatures. This ensures that the fitting procedure is identical for both of
these temperatures, and so any variation in the potential can be ascribed to a thermal, rather than
systematic effect. The data plotted in fig.4 follows this procedure. The points are off-set horizontally
for clarity. We see that the potential at large distances A & 0.8fm have large errors and become
unstable for the hottest temperatures, but those for distances A . 0.8fm have more modest errors
and are predictive.
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From the plot, we see indications of thermal effects which are best seen in the insert for the two
distances A ≈ 0.4 & 0.5fm. When considering neighbouring temperatures which share the same
time window [g1, g2] we see that there is a clear trend towards a flattening of +� as ) increases.
This confirms our expectation that the interquark potential is temperature dependent and becomes
weaker with increasing temperature.

Figure 4: The central interquark potential in the bottomonium system plotted against quark separation A for
a range of temperatures. The points are offset horizontally for clarity. The potentials for each temperature
are obtained by averaging two time ranges [g1, g2] as indicated in the legend, chosen so that they are identical
for neighbouring temperatures. This allows thermal effects to be disentangled from fitting systematics as
discussed in the text. The insert shows a closeup of two A values which indicates a thermal effect.

5. Summary

These proceedings present a calculation of the thermal interquark potential in the bottomonium
system using the HAL QCDmethod with NRQCD quarks. Our fastsum Collaboration’s anistropic
"Generation 2" ensembles were used. We find indications of thermal effects in the central potential,
+� (A), observing the expected flattening of the potential as the temperature increases. Future
work will use lattice derivatives which have smaller discretisation errors, and a momentum space
approach which will allow us to calculate the potential at all spatial displacements. We will also
study higher order terms in the potential.
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