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Calculation of nEDM on the lattice Tanmoy Bhattacharya

1. Introduction

The standard model of particle physics has a tiny CP violation (CPV) in the weak sector arising
from a phase in the Cabibbo-Kobayashi-Maskawa [1, 2] mixing matrix of the quarks, and possibly
a similar phase in the Pontecorvo-Maki-Nakagawa-Sakata [3, 4] matrix in the neutrino sector.
The possible CPV in the strong sector due to topological effects (the 𝑇ℎ𝑒𝑡𝑎-term) is known to be
anomalously small [5, 6]. On the other hand, the observed baryon asymmetry of the universe [7]
is difficult to explain without additional CPV processes [8–10]. CPV is, therefore, a promising
signature for constraining models of physics beyond the standard model (BSM).

To analyze the effect of CPV in a model-independent way, we start by classifying the CPV
operators by their mass dimension. At dimension 3, we can have CPV quark masses 𝑚5�̄�𝛾5𝜓.
These are necessarily flavor-singlet, since flavored axial rotations can be used to remove the rest.
The flavor-singlet axial symmetry is, however, anomalous—it rotates the CPV mass term into the
topological charge operator 𝐺𝜇𝜈�̃�𝜇𝜈 . Thus up to dimension-4, there is only one CPV operator that
we can take to be either a singlet CPV quark mass, or the gluonic topological term.

At dimension 5, we have two kinds of operators that are suppressed by ΛQCD𝑣EW/𝑀2
BSM,

where ΛQCD ∼ 300MeV is a typical hadronic scale, 𝑣EW ∼ 100GeV is the electroweak scale,
and 𝑀BSM ∼ 1TeV is the expected BSM scale: these operators are the electric dipole moment
�̄�Σ𝜇𝜈 �̃�

𝜇𝜈𝜓 and the chromoelectric dipole moment �̄�Σ𝜇𝜈�̃�𝜇𝜈𝜓 of each quark. At dimension 6,
we have a number of terms, all suppressed by Λ2

QCD/𝑀
2
BSM: these are the gluon chromoelectric

moment given by the Weinberg CPV three-gluon operator 𝐺𝜇𝜈𝐺𝜆𝜈�̃�𝜇𝜆, and various CPV four-
Fermi operators. At or below the hadronic scale, the leading effects of the high-scale CPV manifest
as electric dipole moments of elementary particles, and as CPV interactions, for example, between
pions and nucleons [11]. Here we discuss the calculation of the electric dipole moments of the
nucleons on the lattice.

The electric dipole moment of nucleons can be obtained from the electromagnetic vector form
factors. By Lorentz symmetry, there are four of these: the Dirac 𝐹1, the Pauli 𝐹2, the electric dipole
𝐹3, and the anapole 𝐹𝐴 form factors. These are related to the Sachs electric𝐺𝐸 ≡ 𝐹1−(𝑞2/4𝑀2

𝑁
)𝐹2

and magnetic 𝐺𝑀 ≡ 𝐹1 + 𝐹2 form factors, which have intuitive interpretations in the Breit frame.
The form factor 𝐹3 breaks CP symmetry, whereas 𝐹𝐴 breaks PT. All the form factors can be
obtained by decomposing the matrix elements of the vector current in the nucleon state into its
Lorentz covariant pieces:

〈𝑁 |𝑉𝜇 (𝑞) |𝑁〉 = 𝑢𝑁

[
𝛾𝜇 𝐹1(𝑞2) + 𝑖

[𝛾𝜇, 𝛾𝜈]
2

𝑞𝜈
𝐹2(𝑞2)
2𝑀𝑁

+ (2𝑖 𝑀𝑁 𝛾5𝑞𝜇 − 𝛾𝜇𝛾5𝑞
2) 𝐹𝐴(𝑞

2)
𝑀2
𝑁

+
[𝛾𝜇, 𝛾𝜈]

2
𝑞𝜈𝛾5

𝐹3(𝑞2)
2𝑀𝑁

]
𝑢𝑁 . (1)

Here 𝑢𝑁 is the standard Dirac spinor satisfying /𝑝𝑢𝑁 = 𝑀𝑁 𝑢𝑁 , but, in the absence of parity
symmetry, it is not the wavefunction of the asymptotic state created by a generic interpolating field,
�̂� . Instead, we generally have 〈Ω|�̂� |𝑁〉 ∝ 𝑒𝑖𝛼𝑁 𝛾5𝑢𝑁 , where 𝛼𝑁 is a state dependent factor; for our
standard choices for the interpolating operator �̂� , CP symmetry of the theory implies =𝛼𝑁 = 0,
and PT symmetry implies <𝛼𝑁 = 0.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
5
6
7

Calculation of nEDM on the lattice Tanmoy Bhattacharya

75 50 25 0 25 50 75
Q

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y

a12m310gf =0.00 fm
gf =0.17 fm
gf =0.34 fm
gf =0.68 fm
gf =0.86 fm
gf =1.04 fm
gf =1.40 fm

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Q - NearestInteger(Q)

0

2

4

6

8

10

12

Pr
ob

ab
ilit

y

a12m310 gf =0.00 fm
gf =0.17 fm
gf =0.34 fm
gf =0.68 fm
gf =0.86 fm
gf =1.04 fm
gf =1.40 fm

Figure 1: The topological charge distribution (left) stabilizes with a very small amount of gradient flow,
but the noninteger part (right) survives till much later.

The results presented here use the clover-on-HISQ formulation: clover valence quarks on HYP-
smeared [12] HISQ ensembles generated by the MILC collaboration [13]. The clover coefficient
is fixed at its tadpole-improved value 𝑐𝑠𝑤 = 1/𝑢3

0, where 𝑢0 is the fourth root of the plaquette on
smeared lattices. Details of the ensembles are given in our previous publications [14].

2. QCD Topological Term

The coefficient, Θ, of the QCD topological charge is constrained to a tiny value since otherwise
the neutron electric dipole moment (nEDM) would already have been observed [5, 6, 15]. But
the precise relation between the nEDM and Θ has been difficult to find on the lattice since the
ultraviolet fluctuations of the topological charge density are large. Gradient flow [16] smoothens
these ultraviolet fluctuations, and we use this technique here to study the effect of the Θ-term. As
shown in Fig. 1, the overall topological charge distribution stabilizes even with a small amount of
gradient flow. The charge, however, does not become an integer until much later in the flow. In
all our calculations, we use the small-Θ expansion instead of weighting the path integral with a
phase proportional to the topological charge. For this reason, we are not overly sensitive to the
the topological charge taking on noninteger values. To be conservative, we use a value of the
flow-time, 𝜏gf ≡

√︁
8𝑡gf = 0.68 fm for the 𝑎 ≈ 0.06 and 0.09 fm ensembles, and 𝜏gf = 0.86 fm for

the 𝑎 ≈ 0.12 fm ensembles.
We first check the efficacy of the gradient-flow in suppressing ultraviolet fluctuations by

comparing the topological susceptibility against that expected from Chiral Perturbation Theory
(𝜒PT). The Witten-Veneziano relation [17, 18], modified by SU(3) breaking [19], is:

𝜒
quench.
𝑄

≈
𝐹2
𝜋 (𝑀2

𝜂′ − 𝑀2
𝜂)

6

(
1 + 2

𝑀2
𝜂 − 𝑀2

𝐾

𝑀2
𝜂′ − 𝑀2

𝜂

)
. (2)

In the quenched limit this gives the topological susceptibility to be 𝜒quench.
𝑄

≈ (179 MeV)4. With
dynamical quarks [14], the prediction is

1
𝜒𝑄

≈ 1

𝜒
quench.
𝑄

+ 4
𝑀2
𝜋𝐹

2
𝜋

(
1 − 𝑀2

𝜋

3𝑀2
𝜂

)−1

, (3)
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Figure 2: The topological susceptibility becomes almost a constant after a small amount of gradient flow
(left). Long flow-time behavior (right) is seen to be a finite volume effect.

which gives 𝜒𝑄 ≈ (79 MeV)4.
To compare these with lattice results, we note that the topological charge in gradient-flow

scheme does not need renormalization. So, one expects that the lattice data for topological suscep-
tibility should be independent of flow-time after discretization effects become negligible. As shown
in Fig. 2, this result is almost correct. By comparing data on two different volumes, we show that
the small downward trend at large flow-times is a finite volume effect.

We extrapolate the results to 𝑎 = 0 and 𝑀𝜋 = 140 MeV using 𝜒𝑄 ≈ 𝑐1𝑎
2 + 𝑐2𝑀

2
𝜋 + 𝑐3𝑎

2𝑀2
𝜋 .

The data at the coarsest lattices, 𝑎 ≈ 0.12 fm ensembles, do not fit, and for now we ignore it. The
data at 𝑎 ≈ 0.06 fm, 𝑀𝜋 ≈ 310 MeV may suffer from long correlation times (frozen topological
charge). The fit in Fig. 3 including this a06m310 ensemble is, however, reasonable, and our final
result with systematics included is 𝜒𝑄 = (66(9) (4) MeV)4, in good agreement with the 𝜒PT
prediction.

One of the major problems recently discovered [20] about lattice calculations of baryon matrix
elements is that the baryon sources create low-mass multihadron states. Traditionally, the spectrum
of these excited states were evaluated using multi-exponential fits to baryon two-point functions,
and then used in fits to the three-point functions. What we now realize is that exponential fits are
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Figure 3: Extrapolation of the topological susceptibility, ignoring the 𝑎12 ensembles.
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Figure 4: Fits to remove ESC in the three-point function of =𝑉4 in the presence of Θ. The left panel shows
the standard analysis where the spectrum is obtained from fits to the two-point function, whereas the right
panel assumes the dominant contribution is due to an 𝑁𝜋 intermediate state.

not very sensitive to low-lying excited states since

𝐴 + 𝐵𝑒−Δ𝑡 ≈ (𝐴 + 𝐵) − (𝐵Δ)𝑡 for 𝑡 � Δ−1 , (4)

and it is difficult to obtain the required value 𝐴 at 𝑡 → ∞ using data at only moderate 𝑡. As a
result, with finite precision data, the results depend greatly on the priors one puts on the excited
state spectrum. Thus, as shown in Fig. 4, the value of the ground-state matrix element depends
strongly on whether one assumes an 𝑁𝜋 excited state makes a contribution, as expected by 𝜒PT, or
whether the fits to the two-point function gives all the states that contribute significantly.

The electric dipole moment is obtained from the value of the form factor at 𝑄2 = 0. Chiral
perturbation theory provides guidance for 𝑄2 fits. With our data, however, linear fits or fits without
constraining the coefficient of the chiral logarithm makes only a small difference. To obtain the
central results, we carry out a chiral fit based on 𝜒PT and assume a linear dependence on 𝑎; this is
shown in Fig. 5. The final results are

𝑑𝑛 = −0.003(7) (20) Θ𝑒 · fm 𝑑𝑝 = 0.024(10) (30) Θ𝑒 · fm (Standard analysis) (5)

𝑑𝑛 = −0.028(18) (54) Θ𝑒 · fm 𝑑𝑝 = 0.069(25) (120) Θ𝑒 · fm (Assuming N𝜋 state) (6)
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Figure 5: Simultaneous chiral and continuum fit plotted versus 𝑀2
𝜋 (left) and 𝑎 (right) to get the nEDM

due to the topological term. These data were obtained using the standard analysis to remove excited-state
contamination.
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where the second errors are estimates of the systematics other than due to the excited-state spectrum.

3. Weinberg Three-Gluon Operator

The Weinberg three-gluon operator mixes with other operators of the same dimension, and with
lower dimension operators like the topological term. The latter mixing is especially problematic
since this diverges as we take the continuum limit. In the gradient-flow scheme [16], however,
the flow-time acts as a gauge- and Lorentz-symmetric hard ultraviolet cutoff, even as the chiral
and rotational symmetric breaking lattice artifacts vanish in the continuum limit 𝑎 → 0. Thus, in
this scheme, the matrix elements of the Weinberg operator have a finite continuum limit, but do
have a 𝑂 (1/𝑡gf) mixing with the lower dimensional topological charge [21], a log 𝑡gf mixing with
operators of the same dimension, and an 𝑂 (𝑡gf) mixing with higher dimension operators. As a
result, in contrast with the almost flow-time independent topological susceptibility, the Weinberg
and mixed susceptibilities have a strong dependence on the flow time, as shown in Fig. 6. In
addition, the 𝐹3 calculated from the matrix element of the product of the vector current and the
Weinberg operator, needs the subtraction of a log 𝑡gf dependent contribution from the quark-EDM
operator.
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Figure 7: The simultaneous chiral (right) continuum (left) extrapolation of nEDM due to Weinberg operator
in the gradient-flow scheme at 𝜏gf ≈ 0.34 fm.
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In Fig. 7, we present the results in the continuum-extrapolated gradient-flow scheme at a fixed
𝜏gf ≈ 0.34 fm. Note that the results are scheme and flow-time dependent. To convert these to a
convenient scheme like MS requires a perturbative calculation of the mixing and renormalization
constants.

4. Quark Chromoelectric Dipole Moment

Like the Weinberg operator, the chromo-electric dipole moment (cEDM) operator has power-
divergent mixing with the pseudoscalar operator, which can be removed by gradient-flow techniques.
In this work, we present an alternate analysis using only unflowed results. To this end, we notice
that the power-divergence can be subtracted to define an operator

�̃� ≡ 𝑖�̄�𝜎𝜇𝜈𝛾5𝐺𝜇𝜈𝑇
𝑎𝜓 − 𝑖𝐴

𝑎2 �̄�𝛾5𝑇
𝑎𝜓 , (7)

which has only logarithmic mixing for on-shell zero four-momentum quantities. Here the coefficient
𝐴 needs to be adjusted to cancel the ultraviolet divergence, and we fix it by requiring that �̃� not
create a single pion out of the vacuum, i.e., 〈Ω|�̃� |𝜋( ®𝑝 = 0)〉 = 0.

Furthermore, at zero four-momentum, any isovector 𝑃 can be rotated away using the nonanoma-
lous Ward identity! For Wilson-clover fermions, however, the hard violation of chiral symmetry
leaves behind an 𝑂 (𝑎) piece after this rotation:

𝑍𝐴(1 + 𝑏𝐴𝑚𝑎)𝜕 · 𝐴 + 𝑖𝑎𝑍𝐴𝑐𝐴𝜕2𝑃 + 2𝑚𝑖𝑃 − 𝑖𝑎𝐾�̃� ∼ 0 (8)

The constant 𝐾 that appears in Eq. (8) can be evaluated by implementing the Ward identity
on any state. To obtain good signal, we choose the state |𝜋〉 created by a smeared pseudoscalar
interpolating field.

𝑖𝑎Δ4〈𝜋 |𝐴4〉 − 𝑐𝐴𝑎2Δ2
4〈𝜋 |𝑃〉 + 𝑥𝑎

2〈𝜋 |𝐶〉
〈𝜋 |𝑃〉 ≈ �̄� +𝑂 (𝑎2) (9)
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Figure 9: Example of fits to remove ESC in the three-point function of the imaginary part𝑉4 in the presence
of a cEDM on the 𝑑 quark. The rest is similar to Fig. 4.

where 𝐴4(𝑥) = �̄�(𝑥)𝑇3𝛾4𝛾5𝜓(𝑥), 𝐶 ≡ 𝑖 �̄�𝜎𝜇𝜈𝛾5𝐺𝜇𝜈𝑇
3𝜓, 𝑃 ≡ �̄�𝑖𝛾5𝑇

3𝜓, 𝑥 ≡ 𝐾 , 𝑦 ≡ 2𝑚𝑎 + 𝐴, and
the bar denotes division by 1+𝑏𝐴𝑚𝑎. We can determine 𝑐𝐴, 𝑥 and �̄� by fitting the LHS to a constant;
in practice, we first determine 𝑐𝐴 to make the LHS a constant over a large range in Euclidean time,
and then determine 𝑥 and �̄� to extend the region holding 𝑐𝐴 fixed. In terms of these, the three
isovector operators

(
𝑎𝐶 − 𝐴 𝑃

𝑎

)
,
(
�̄�

�̄�
− 𝐴

)
𝑃
𝑎

, and
(
1 − 𝐴�̄�

�̄�

)
𝑎𝐶 are related by the Ward identity, and

describe the same physics! Note that the coefficient 𝑥 is zero if all 𝑂 (𝑎) chiral symmetry breaking
is removed by nonperturbatively tuning the coefficient 𝑐𝑆𝑊 of the clover term. But, as is clear from
the equations, the physical effects of the isovector operator 𝑃 are enhanced by one inverse power
of 𝑚𝑎, so a small mistuning gives a large contribution. By the same token, any 𝑂 (𝑎2) effect in the
determination of 𝑥/�̄� from the Ward identity have a large effect on the determination of 𝐹3. As a
result, the different determinations of the contribution of the cEDM operator do not agree, as shown
in Fig. 8; leading to a large systematic error in the determination of 𝐹3.

In addition to this uncertainty, the assumed spectrum of intermediate states that contribute
significantly to the three-point function also makes a large difference in the determination. Fig. 9
illustrates this uncertainty. Finally, we show a preliminary chiral-continuum extrapolation of the
results in Fig. 10. The errors indicated here are only statistical.
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Figure 10: Chiral-continuum extrapolation of nEDM due to cEDM using the fit ansatz: 𝑑𝑁 = 𝑐1+𝑐2𝑀
2
𝜋+𝑐3𝑎

giving −0.18(17) at the physical point. A fit to 𝑎2 has almost same quality and the same extrapolated value.
On each ensemble, the excited state contamination is removed using the standard analysis based on the
spectrum from the nucleon two-point function.
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5. Conclusions

Our calculations show that there is no reliable determination of nEDM from the topological
term yet. We find that gradient-flow is a good approach to study gluonic quantities. A very
important systematics one needs to tackle is understanding the spectrum of low-lying excited states
that give significant contribution to the three-point function. Finally, we showed that, in principle,
the power-divergence in isovector cEDM does not pose a problem, but these are not yet under
control in current calculations.
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