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We introduce a new method to calculate phase shifts on noisy intermediate scale quantum (NISQ)
hardware platforms using a wave packet edge time delay. The method uses the early and inter-
mediate stages of the collision because the standard method based on the asymptotic out-state
behavior is unreachable using today’s NISQ platforms. The calculation was implemented on a
4-site transverse Ising model in one spatial dimension with and without a potential interaction. A
time evolution operator describing the progression of the system was constructed and transmission
and reflection coefficients were calculated based on the identified quantum Fourier transformed
momentum states. The detailed analysis of the phase shift calculations on both IBM supercon-
ducting transmon and University of Maryland ion trap quantum computers shows the platform
independence of themethodology. This successful implementation of this wave packet preparation
and projection on momentum eigenstates can now be performed with actual quantum computing
hardware platforms. This method provides a procedure for calculating phase shifts and opens
the possibility of using noisy intermediate scale quantum devices to perform real-time quantum
mechanics and quantum field theory scattering calculations.
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1. Introduction

Within high-energy and nuclear physics communities, there is a long term goal to develop
quantum computing methods that can perform real-time evolution of an observable using the theory
of strong interactions. Lattice quantum chromodynamics (QCD) is an ab-initio, ultraviolet complete
formulation of this theory that has been very successful in describing the static properties of hadrons
and nuclei 1 using importance sampling methods in Euclidean time. However, such lattice QCD
calculations are not effective when dealing with the rapid oscillations of real-time unitary operators
acting on large Hilbert spaces.

The ability to perform real-time simulations of quantum field theories would represent a major
step forward in applying lattice field theory methods to physics scattering problems, ab-initio jet
physics and implementation of strategies to address related question of parton distributions [2, 3].
Appplying real-time methodologies toward computations in quantum gravity [4] would also have a
large potential impact.

Quantum computers offer new approaches to various sign problems and in recent years the
idea of simulating quantum field theory with quantum computers has gained considerable interest
[5]. However, today’s noisy intermediate scale quantum (NISQ) machines are extremely limited in
the size and capability to perform such computations.

An important first step toward these long-term lattice QCD goals will be to demonstrate the
ability to design and implement algorithms that can model phase shifts in the scattering process
that represent the total change of phase due to interactions using actual NISQ based hardware
platforms. Starting from the traditional approach to quantum mechanical scattering found in
standard textbooks, the phase shifts and scattering amplitudes are estimated from asymptotic data
long after the collision processes have occurred. Significant progress has been made in calculating
them from fromfinite-volume spectroscopy using latticeQCDatEuclidean time [6–11]. Because the
current shortcomings of these NISQ hardware platforms have limited coherence time or gate-depth,
these constraints preclude using the traditional scattering approach with the quantum computing
hardware platforms.

A promising new approach to exploring scattering phase shifts with today’s quantum computing
hardware can be implemented if we can compute the real-time evolution "in the middle of the
collision process" rather than the for asymptotic states long after the collision. For this purpose, we
developed a method based on Wigner time-shift formula for the derivative of the phase shift with
respect to the energy.

As a first step we implemented these ideas on the quantum Ising model (QIM). Real time
evolution involving a limited number of sites for the QIM has already been attempted using a few
qubits on gate based quantum computers [12–25], as well as developments in progress for more
complicated models [26–40]. For processes involving a few Trotter steps, error-mitigation methods
such as zero-point extrapolation [41], written for a generic noise that can be intentionally increased
in order to attempt an extrapolation to zero noise, have been applied successfully [30, 42, 43]. It has
been shown [15] that by modelling four qubits on an IBMQ quantum computing hardware platform
these mitigation methods together with using significantly larger Trotter steps [14, 44, 45] provide

1See review 17 of the PDG [1].
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a reasonable extrapolation for times of the order of the approximate periodicity of the problems
considered.

We report that these recently developed methods can be used for state-of-the-art NISQ devices
to prepare and evolve suitable wave packets for the QIM. Quantum computing algorithms are
designed based on preparation of an initial state, then a real-time evolution of that state and finally
a measurement of the probability for a particular final state.

In order optimize this algorithmic design under the constrained NISQ hardware resources
available, we introduce the quantum Ising model with an extra interaction and its Hilbert space
and focus on the reduced problem of a particle coming from the left, rebounding on a wall and
returning to the left. We show that it is possible to project the wave-function in the early stages of
a collision process onto momentum states and to pinpoint a time 𝑡★ corresponding to the middle of
the collision with the wall. This time can be estimated by computing the time when the probability
for the approximate momentum of the initial wavepacket and its opposite are equal. In practice,
this can be done by introducing a normalized probability 𝑅−(𝑡) for the reflection, defined later in
Eq. (9) and which takes the value 0.5 at 𝑡★. By introducing an extra interaction close to the wall,
we obtain a time delay Δ𝑡★ illustrated in Fig. 1. We show that Δ𝑡★ is half of the time delay Δ𝑡𝑊
invoked in Wigner formula [46], provided in Eq. (6), to estimate the derivative of the phase shift
with respect to the momentum.

0 20 40 60 80
t

0.0

0.5

1.0

R
(t) t *

free
exact
interacting
exact

Figure 1: Illustration of the measurement of the time delay between the free and interacting wave packets.
The normalized reflection probability 𝑅− (𝑡) is defined in Eq. (9). From [47]

We can extract the phase shift by comparing the cases with and without an external potential
and show that it is possible to extend the computations to the case of the quantum field theory
formulations [14]. The QFT formulation requires more qubits but is guaranteed to scale efficiently
for larger volumes. More specifically, it can shown [48] that for finite range interactions involving
only nearest neighbor degrees of freedom, the computing time scales like the size of the system.

We have implemented this approach on both IBM superconducting transmon machines and a
trapped ion system operating at the University of Maryland [49]. We present our results for the real
time phase shifts measurements obtained using both hardware platforms.

2. Model for Real-time Phase shift Calculation

In this section and the next section, we follow closely Ref. [47] where we considered the
transverse-field Ising model in one spatial dimension with a potential,

�̂� = −𝐽
𝑁−1∑︁
𝑖=1

�̂�𝑥
𝑖 �̂�

𝑥
𝑖+1 − ℎ𝑇

𝑁∑︁
𝑖=1

�̂�𝑧
𝑖
+ �̂� (1)
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The on-site energy ℎ𝑇 is often called a transverse magnetic field and the ferromagnetic nearest-
neighbor interaction 𝐽 is responsible for particle hopping, creation and annihilation. Without �̂� ,
this model is very well understood [50, 51] and discussed for NISQ devices [12–15].

If we consider the case where 𝐽 ≪ ℎ𝑇 the model separates into energy bands corresponding to
particle number because the energy bands mix at O(𝐽2) in perturbation theory. This significantly
reduces the size of the Hilbert space and allows analytic calculations [14]. In ref. [47], a non trivial
interaction which generates a phase shift (in the quantum mechanics limit), has the form

�̂� =
𝑈

2
(1 − �̂�𝑧

𝑁
). (2)

This choice of potential allows for non-trivial scattering of a particle off of an external potential.
This discrete Schrödinger equation obtained in the limit of small 𝐽, with𝑈 = 0, and no boundaries
admits plane wave solutions 𝑒±𝑖𝑘𝑥 with energy

𝐸 (𝑘) = 2𝐽 (1 − cos(𝑘)). (3)

Imposing the boundary conditions 𝜓(𝑁 + 1) = 0 provides the following expression for the
phase shift,

𝑒𝑖2𝛿 (𝑘) = 𝑒−𝑖2𝑘
𝑈 + 𝐽𝑒𝑖𝑘

𝑈 + 𝐽𝑒−𝑖𝑘
, (4)

Quantum simulations need to be carried out in finite volume. By imposing 𝜓(0) = 0, we obtain a
Luscher formula

𝛿(𝑘) = −𝑘 (𝑁 + 1) mod 𝜋, (5)

which introduces a restriction on the momenta. The restriction to a finite number of sites implies a
𝑁-dependence.

It was shown in [46] that
Δ𝑡𝑊 = 2𝛿′(𝑘)/(𝜕𝐸/𝜕𝑘), (6)

where 𝜕𝐸/𝜕𝑘 is the group velocity, which in our case is 2𝐽 sin(𝑘). Substitution of 𝛿(𝑘) from Eq.
(4) into Eq. (6) yields the time delay,

Δ𝑡𝑊 = (−1 + 𝐽
𝑈 cos(𝑘) + 𝐽

𝑈2 + 𝐽2 + 2𝐽𝑈 cos(𝑘)
)/𝐽 sin(𝑘). (7)

In order to measure the time delay Δ𝑡𝑊 from the first half of the scattering process, we need to
measure the occupation probability in the desired momentum states | ± 𝑘⟩,

𝑃±(𝑡) ≡ |⟨±𝑘 |𝜓(𝑡)⟩|2, (8)

normalized in the following way

𝑅±(𝑡) ≡
𝑃±(𝑡)

𝑃+(𝑡) + 𝑃−(𝑡)
(9)

which immediately satisfy
𝑅+ + 𝑅− = 1. (10)
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We define the time, 𝑡∗, when 𝑅+(𝑡) = 𝑅−(𝑡). We then compare the values of 𝑡∗ including
and excluding the potential and call these times 𝑡∗

𝑓 𝑟𝑒𝑒
and 𝑡∗

𝑖𝑛𝑡.
respectively. Twice the difference

between these two times is the Wigner time delay,

Δ𝑡★ = 𝑡∗𝑖𝑛𝑡. − 𝑡∗𝑓 𝑟𝑒𝑒 =
Δ𝑡𝑊

2
(11)

The details confirming these statements are elaborated in [47].

3. Explicit Calculation

The effective Hamiltonian for 𝑁 = 4 is

�̂�𝑒 𝑓 𝑓 =

©«
0 −𝐽 0 0
−𝐽 0 −𝐽 0
0 −𝐽 0 −𝐽
0 0 −𝐽 𝑈

ª®®®®¬
. (12)

This reduces effective Hamiltonian reduces the Hilbert space from 24 states to 4 states with the
following remapping:

|1000⟩ → |00⟩, |0100⟩ → |01⟩, |0010⟩ → |10⟩, and |0001⟩ → |11⟩. (13)

This is visually depicted in in Fig. 2. The Hamiltonian in Eq. (12) can now be written as

�̂�𝑒 𝑓 𝑓 = −𝐽𝜎𝑥
𝐼𝐼 −

𝐽

2

(
𝜎𝑥
𝐼 𝜎

𝑥
𝐼𝐼 + 𝜎

𝑦

𝐼
𝜎

𝑦

𝐼𝐼

)
+ 𝑈

4
(1 − �̂�𝑧

𝐼
) (1 − �̂�𝑧

𝐼𝐼
). (14)

The subscripted roman numerals are used to indicate the use of our two-qubit decomposition.
For our simulations we set 𝐽 = 0.02 and𝑈 = 0.03 and use the initial state that has some spacial

localization
|𝜓⟩ = 1

√
2

(
|01⟩ + 𝑖 |10⟩

)
. (15)

This state has significant overlap with the 𝑘 = 𝜋/2 momentum state.

Figure 2: In this figure the qubit states rare represented by black dashes, the potential for the interacting case
is in blue, the non-interacting case is in dark red, and the initial wave packet is in light red. From [47]

The following circuit constructs the wave packet with all qubits initialized in the |0⟩ state.

𝑈state prep =
𝑋

𝑋𝑋

(
− 3𝜋
2

)
. (16)
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The time evolution operator is given by

𝑈Tr(𝜌, 𝜃) =
𝑅𝑥 (2𝜌)

𝑋𝑋 (𝜌) 𝑌𝑌 (𝜌)
•

𝑅𝜙 (𝜃)
, (17)

where 𝜌 = 𝐽𝛿𝑡, 𝜃 = 𝑈𝛿𝑡, and 𝛿𝑡 = 12.5. We use standard notations [52] for the gates,

𝑋𝑋 (𝜌) =𝑒−𝑖𝜌𝑋𝑋/2, 𝑌𝑌 (𝜌) = 𝑒−𝑖𝜌𝑌𝑌/2, and 𝑅𝑋 (𝜌) = 𝑒−𝑖𝜌𝑋/2. (18)

The very slow growth of the one-step error for large 𝛿𝑡 [44, 45] allows us to reach 𝑡 = 75 with only
six Trotter steps [15].

A quantum Fourier transform (QFTr) on these two qubits takes this state into momentum space:

𝑈𝑄𝐹𝑇𝑟 =
𝑅𝜙 (𝜋/2) 𝐻

𝐻 •
. (19)

After applying the QFTr, the qubit states |10⟩ and |11⟩ correspond to the momentum states |𝑘⟩ and
| − 𝑘⟩ respectively, with 𝑘 = 𝜋/2.
We fit the data to the following deformed sigmoid

𝑅−(𝑡) ≃ 𝐴/(1 + exp
(
−( 𝑡 − 𝑡★

𝑤
)
)
), (20)

where 𝑤 describes the width of the transition region and 𝑡★ is related to 𝑡★ via,

𝑡★ = 𝑡★ − 𝑤 ln(2𝐴 − 1), (21)

where 𝑤 and 𝑡∗ are fit parameters. Due to systematic effects from the quantum computer for the
interacting simulation we set 𝐴 equal to the last data point, which is then excluded from the fit. For
the free case, the damping occurs at later time and we set 𝐴 = 1 and fit the standard sigmoid with
the six data points.

The simulations for the full field theory follow a similar path. We prepare the initial state,

|𝜓𝑖⟩ =
1
√
2

(
|0100⟩ + 𝑖 |0010⟩

)
. (22)

The Trotterization involves the natural Ising gate 𝑒−𝑖𝐽 𝛿�̂��̂� and 𝑒−𝑖 𝜃 �̂� . The Fourier transform
can be implemented using circuit presented in [53] which can be implemented with circuit depth
O

(
𝑛log(𝑛)

)
.

The data for 𝑅−(𝑡) obtained from both hardware platforms including the fits is shown in Fig 3
(left) for the effective Hamiltonian and Fig. 3 (right) for the full field theory Hamiltonian. The
numerical values for Δ𝑡∗ are provided in Table 1. The Trotter-exact and continuous-time estimates
have assumed errors on par with the statistical errors from the quantum simulations,

𝛿𝑅−(𝑡) =
√︁
𝑅−(𝑡) − (𝑅−(𝑡))2/

√︁
𝑁𝑠ℎ𝑜𝑡𝑠, (23)
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Type Continuous Trotter-exact Trapped ions IBM
Q.M. -17.5(1) -13.7(9) -26(2) -21(2)
Q.F.T. -17(1) -14.3(9) -14(2) -15(2)

Table 1: Results for Δ𝑡∗ in the quantum mechanics limit (Q.M) and full field theory (Q.F.T.) from sigmoid
fits of the simulated continuous and Trotter-exact evolutions as well as the experimental data from the trapped
ions and IBM quantum computers.

with 𝑁𝑠ℎ𝑜𝑡𝑠 = 1000. For comparison, we give the values obtained by doing sigmoid fits of
the continuous-time evolution (first column) and the Trotter steps (second column) calculated
numerically at the same discrete times as the experimental data. The readout errors for the trapped
ion computer were corrected by applying the state preparation and measurement correction. The
readout errors were corrected on the IBM simulation using a pseudo-matrix inversion with least
squares to ensure entirely physical values [54]. In addition the IBMQ Bogota simulation used
Richardson extrapolations which take into account further systematic errors from the environment
which produce larger uncertainties but a full extent of the systematic errors are very difficult to
estimate.

We see that both the IBM and trapped ion estimates provide larger absolute values of Δ𝑡∗ than
the target values. This can be in part explained by the fact that the fits for the free process tend to
lag below the Trotter steps for 𝑡 > 50 indicating a loss of coherence.

Measurements from the IBMQ Bogota machine contain both the noisy data with just readout
corrections and a mitigated version obtained using methods discussed in Ref. [15] and which
account for some slightly negative occupations at low 𝑡. This noise mitigation involves increasing
the effective error rate in the circuit by applying iterated CNOT’s to increase the decoherence
noise and then using a linear fit to data at different noise rates to extrapolate to a noiseless limit.
The trapped ion simulations and the full field theory simulations include only readout corrections
without noise mitigation due to circuit length constraints.

We see that the quantum mechanics approximation allows us to perform the QFTr and get
reasonable estimates of Δ𝑡∗, (Table 1). We expect to improve the accuracy of these estimates in
the near future. The extension of this procedure for more than four sites requires an all-to-all
connectivity and a CNOT depth increasing with the number of sites. In contrast, the field theory
calculation, which is our ultimate goal, requires more qubits but remains local [48] with a constant
CNOT depth.

4. Conclusions and Next Steps

We have developed a novel method to extract the phase shift from the real-time evolution in
the early stages of the scattering process. We have demonstrated that practical implementations
are possible on both IBM superconducting transmon and trapped ion hardware platforms for two
simulation schemes (field theory and a quantum mechanical limit). There is clearly room for
optimization and at this point, we cannot claim that our results allow a systematic comparison
between the two platforms.

For the next steps, we recognize that a practical implementation of the Wigner time-shift
formula for the derivative of the phase shift with respect to the energy will require that we fit a

7
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Figure 3: Figure on the left shows the quantum mechanics limit for 𝑅− (𝑡). Systematic errors shown for IBM
mitigated results. Figure on the right shows the experimental results for 𝑅− (𝑡) using the full Hamiltonian of
equation 1 with and without the interaction term. The 4 qubit trapped ion results are shown on top in figure
and the IBM results in the bottom figure. The Hamiltonians use the parameters 𝐽 = 0.02, ℎ𝑇 = 1.0, and
𝑈 = 0.03. Statistical Errors are shown for all except for mitigated results. From [47].

normalized reflection probability with a specific model. This will capture the time delay build up
in the collision process when an interaction is added. When comparing NISQ data with the model,
it seemed plausible that the systematic errors relative to the signal in the early and late stage are
significantly larger than the statistical errors. For future work, we plan to include reliable estimates
of these systematic errors. This would allow us to sharpen the accuracy of the fits of the time shifts.
We also expect that the field theory calculations should be feasible for a larger number of qubits in
the near future. A detailed comparison with existing real-time methods in one spatial dimension
[55–58] would be of great interest. Quantum computations for quantum Ising models in two spatial
dimensions could offer the possibility to reach quantum advantage.
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