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Pure gauge theories are rather different from theories with pure scalar and fermionic matter,
especially in terms of the nature of excitations. For example, in scalar and fermionic theories, one
can create ultra-local excitations. For a gauge theory, such excitations need to be closed loops
that do not violate gauge invariance. In this proceedings, we present a study on the condensation
phenomenon associated with the string-like excitations of an Abelian lattice gauge theory. These
phenomena are studied through numerical simulations of a 𝑈(1) quantum link model in 2+1
dimensions in a ladder geometry using matrix product states. In this proceedings, we show the
existence of ground states characterized by the presence of such string-like excitations. These are
caused due to the condensation of torelons. We also study the relationship between the properties
of the plaquettes in the ground state and the presence of such condensation phenomenon.
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1. Introduction

Quantum simulators are promising concepts, which enable experimental realizations of theo-
retical models. They are increasingly used to study the physics of lattice quantum field theories[1].
Nevertheless, classical simulations are still the most reliable method to study lattice field theory,
with results close to the thermodynamic limit. In particular, tensor networks are a great tool to
study lattice field theory in situations where standard Markov chain Monte Carlo is known to fail
[2]. In addition, such classical tensor network simulation methods can guide and benchmark quan-
tum simulations since they share the same Hamiltonian. In this regard, such classical simulation
methods are very well positioned to guide frontier research in this field.

In this work, we expand on exploring the phases which can be realized in a strongly interacting
lattice gauge theory. It is well-known that for a pure gauge theory, it is possible to have loop operators
which wind around the spatial volume, which we will denote aswinding number operator and which
are termed as torelons [3]. For the non-Abelian gauge groups 𝑆𝑈(2) or 𝑆𝑈(3) commonly used for
studies of confinement, these operators are associated with a 𝑍(2) or 𝑍(3) center symmetry. In the
case of the Abelian𝑈(1) lattice gauge theory, however, such operators carry a global𝑈(1) quantum
number. Consequently it becomes possible to couple a chemical potential to this winding number
operator. Here, we study the condensation phenomena of the string-like excitations (expectation
value of the winding number operators) at large values of the chemical potential coupled to the
winding number operator.

The presence of string-like excitations that can spread over the entire lattice extent in a cylin-
drical geometry is of great interest [4, 5]. In particular, one can ask to what extent the confining
properties of the ground state are disturbed when such excitations are present. To illustrate why this
can be the case, consider the physics of an interacting bosonic or fermionic model with a global
symmetry. A pedagogical example is the XY-model, where one can also couple a chemical poten-
tial. In the absence of the chemical potential at weak couplings, the excitations are short ranged,
and the system has a mass gap. However, upon subjecting the system to a sufficiently large chemical
potential, the particle excitations condense, and long-range correlations (signalled by a non-zero
value of the superfluid stiffness) appear in the system [6]. We aim to investigate such physics in the
pure gauge theory context. Furthermore, these string-like excitations of a gauge theory have their
own unique dynamics, which can in principle be very different from the dynamics of point-particles
in scalar theories or mesons in fermionic theories.

The goal of this study is to demonstrate the presence of the string excitations in the ground
state numerically. In scalar or fermionic theories, the expectation value of the particle number
operator presents discrete jumps when the chemical potential is increased (e.g., [6, 7]). When we
raise the system’s density, a higher particle state may have lower energy than the corresponding
lower particle state. We expect the same behaviour for string-like excitations in our Abelian gauge
theory. This sting-like excitations divide the Hilbert space in sectors that are exponentially hard
to explore by Quantum Monte Carlo simulations. For this reason, tensor network algorithms have
been chosen to simulate this model.
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Figure 1: Ladder geometry of the lattice and its local basis used inside the DMRG algorithm. The periodicity
in �̂� is indicated by the dashed lines. Furthermore we show the two flippable plaquettes (↺,↻) and a non
flippable plaquette (↻̸).

2. Quantum link model

While a Wilson-type Abelian gauge theory has an infinite-dimensional Hilbert space for ev-
ery link, the quantum link models (QLMs) regulate this infinite-dimensional Hilbert space in
a completely gauge-invariant fashion [8–10]. This is achieved by replacing the quantum rotors
in the Wilson theory for a quantum spin in the QLM, such that the resulting finite-dimensional
Hilbert spaces have sizes (2𝑆 + 1) locally on the links. The spin representations take the values
𝑆 = 1/2, 1, 3/2, . . . and the Wilsonian theory is obtained when 𝑆 → ∞ [11]. In this work we
consider the 𝑈(1) quantum link model in 2+1 dimensions with the spin 𝑆 = 1/2 representation.
Due to the low finite dimensional Hilbert space of this model, quantum simulator proposals have
been made [12, 13], or this could be simulated on larger NISQ devices [14].

The Hamiltonian of the system is defined as:

H = −𝐽∑
◻
(𝑈◻ +𝑈†

◻) +∑
◻
𝜆(𝑈◻ +𝑈†

◻)2 , (1)

where we have defined the plaquette operator 𝑈◻ =𝑈𝑥,𝜇𝑈𝑥+�̂�,𝜈𝑈
†
𝑥+�̂�,𝜇𝑈

†
𝑥,𝜈 and the operators 𝑈𝑥,𝜇

act on the links. The Hamiltonian has a local 𝑈(1) gauge symmetry and the generator of the
symmetry is:

𝐺𝑥 =∑
𝜇

(𝐸𝑥−�̂�,𝜇 − 𝐸𝑥,𝜇) =∑
𝜇

(𝑆𝑧𝑥−�̂�,𝜇 − 𝑆
𝑧
𝑥,𝜇) (2)

where 𝐸𝑥,𝜇 is the electric field operator. The gauge-field operator is canonically conjugate to
the electric field operator, i.e., [𝐸𝑥,𝜇,𝑈𝑦,𝜈] = 𝑈𝑥,𝜇𝛿𝜇,𝜈𝛿𝑥,𝑦 and [𝐸𝑥,𝜇,𝑈

†
𝑦,𝜈] = −𝑈†

𝑥,𝜇𝛿𝜇,𝜈𝛿𝑥,𝑦 .
As explained before, we can use quantum spins as degrees of freedom, which satisfy the above
commutation relations. In the 𝑆𝑧 basis, we can represent: 𝑈𝑥,𝜇 = 𝑆+𝑥,𝜇,𝑈†

𝑥,𝜇 = 𝑆−𝑥,𝜇 and 𝐸𝑥,𝜇 = 𝑆𝑧𝑥,𝜇,
with the spin raising and lowering operators 𝑆+ and 𝑆−.

3. Symmetries of the model

We consider a 2+1 dimensional lattice with extension 𝐿𝑥 × 𝐿𝑦 , shown in Figure 1. In addition
to the 𝑈(1) gauge symmetry, the Hamiltonian also has the point group symmetries (translation,
(discrete) rotation, and parity). The Hamiltonian is invariant under the charge conjugation symmetry
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(𝑍2). Moreover, the system has a global invariance with respect to winding number transformations
(𝑈(1)⊗𝑈(1)). The generators of these symmetries are the winding number operators:

𝑊𝑥 =
1
𝐿𝑦

𝐿𝑦

∑
𝑦

𝑆𝑧(𝑥,𝑦), �̂� and 𝑊𝑦 =
1
𝐿𝑥

𝐿𝑥

∑
𝑥

𝑆𝑧(𝑥,𝑦), �̂� , (3)

respectively for the 𝑥 direction and for the 𝑦 direction. The generators of this symmetry commute
with the Hamiltonian [𝐻 ,𝑊𝑥] = [𝐻 ,𝑊𝑦] = 0 and are thus simultaneously diagonalizable. We
therefore add these operators to the Hamiltonian with the coefficient 𝜇𝑥 and 𝜇𝑦 used as chemical
potential in the 𝑥 and in the 𝑦 direction. The resulting Hamiltonian is:

𝐻 = −𝐽∑
◻
(𝑈◻ +𝑈†

◻) + 𝜆∑
◻
(𝑈◻ +𝑈†

◻)2 + 𝜇𝑥∑
𝑥

𝑊𝑥 + 𝜇𝑦∑
𝑦

𝑊𝑦 . (4)

The operators 𝑊𝑥 and 𝑊𝑦 allow for the formation of stringy excitations that spread over the lattice.
Moreover, in analogy with the particle number operators in fermionic and scalar theories, the ground
state energy is given by:

𝐸𝐺𝑆 = 𝐸H − 𝜇𝑥𝑁
𝑥 − 𝜇𝑦𝑁

𝑦 , (5)

where 𝑁 𝑥 and 𝑁 𝑦 are the expectation values of∑𝑥𝑊𝑥 and∑𝑦𝑊𝑦 . We now consider all the possible
states one plaquette can have. Since a plaquette is formed, in our quantum link model, by four
different spins 1/2, the number of states is 𝑛states = 24 = 16. The two plaquette operators present in
the Hamiltonian are:

𝑈◻ = 𝑆+𝑥,𝜇𝑆+𝑥+�̂�,𝜈𝑆−𝑥+�̂�,𝜇𝑆−𝑥,𝜈 and 𝑈†
◻ = 𝑆−𝑥,𝜇𝑆−𝑥+�̂�,𝜈𝑆+𝑥+�̂�,𝜇𝑆+𝑥,𝜈 . (6)

In our representation, a plaquette can be any combination of the four different spins that compose
the plaquette (e.g., ∣↓↓↓↑⟩). Between all the possible 16 states a plaquette can have, only two are
not annihilated by the action of the 𝑈◻ and 𝑈†

◻ operators. The two possible states ∣↻⟩ and ∣↺⟩
are visualized in Figure 1. We define ∣↻⟩ as the classical state in which the plaquette state has a
clockwise orientation (∣↑↑↓↓⟩). We define ∣↺⟩ as the classical state in which the plaquette state has
a counter-clockwise orientation (∣↓↓↑↑⟩). We define the flippability operator 𝑂flipp as the difference
between the fippability in even and odd sites in the x direction over the lattice:

𝑂flipp =∑
◻
(−1)𝑥(𝑈◻ +𝑈†

◻)2 =∑
◻
(−1)𝑥(𝑈◻𝑈†

◻ +𝑈†
◻𝑈◻) . (7)

We note that, within the quantum link formulation, the operator 𝑈◻𝑈†
◻ is not the identity operator

since𝑈◻ is not unitary. Hence, this operator can measure non-trivial correlations. In the numerical
studies, we will demonstrate a correlation between this operator and the number of excitations
present in the ground state.

4. Numerical simulations

In our numerical studies, the wave function of the system is represented by matrix product
states and the ground state of the model is computed with the Density matrix renormalization group
algorithm (DMRG)[15]. The DMRG algorithm performs extremely well in 1+1 dimensions. For
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Figure 2: Derivative of the energy as a function of the chemical potential.

this reason, we have studied the system in a ladder geometry (see Figure 1) with open boundary
conditions in the 𝑥 direction and periodic boundary condition in the 𝑦 direction (the theory lives
on a cylinder). The local basis used inside the DMRG algorithm is shown in Figure 1. It is staged
together as a chain to form the ladder geometry of our lattice. The dashed lines indicate the links
on the periodic boundary. In the numerical studies, We keep 𝜇𝑥 = 0 in order to prevent the system
from generating a winding in the x-direction, which would otherwise kill all dynamics.

The commutator [𝐻,𝑊𝑦] is no longer zero when open boundary conditions are imposed.
However, the non-commuting terms only appear in the boundaries, and therefore for large enough
extents in the x-direction this does not pose a problem. Moreover, note that the effect of the 𝑊𝑦

operator can also be realized by imagining a static charge-anti-charge pair at the boundaries, which
inject a background electric flux into the system. In our numerical simulations, we explore the effect
of the chemical potential (𝜇𝑦) on the ground state properties of the theory. We fix the parameter in
the Hamiltonian to be 𝐽 = 1 and 𝜆 = −1. We study the properties of the ground state as a function
of the chemical potential 𝜇𝑦 .

In Figure 2 we show the numerical derivative of the ground state energy extrapolated in the
infinite bond dimension limit with respect to the chemical potential as a function of the chemical
potential. The derivative of the expectation value of the energy of the ground state corresponds to
the expectation value of the winding number operator on the ground state. The winding number
operator can be seen as an operator that counts the number of string-like excitations in the ground
state. In this case the excitations are strings that propagate through the whole lattice. Discrete
jumps in the number of excitations in the ground state are clearly visible in Figure 3. When the
chemical potential is increased, the system favors a lower energy state with more particles in the
ground state.

In Figure 3 we plot two different quantities as a function of the chemical potential. In blue we
plot the absolute value of the flippability of the state defined in Equation 7. When the values in the
plot are close to zero, they are zero to numerical precision (10−10 in our case). We plot the absolute
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Figure 3: Correlation between flippability and winding sectors.

value of the expectation value because the operator is symmetric under charge conjugations. In
orange, we plot the expectation value of the winding number operator. It is clear from this plot that
the two quantities are correlated. Starting from small chemical potential, we have a low number
of excitations and a zero flippability. When we increase the chemical potential, we see a transition
in the winding number and in the flippability. At the next transition point for the winding number
operator, the flippability goes back to zero. This pattern is repeated when the chemical potential is
increased. Since the flippability operator is defined as the difference of the flippability of the single
plaquettes in even and odd site, we can measure if we have an even or odd number of excitations in
the ground state by computing the expectation value of the flippability.

5. Conclusions

In this proceeding, we analyzed a 𝑈(1) quantum link model in 2+1 dimensions in a ladder
geometry. Having motivated the importance of coupling a chemical potential to the winding
number operators, we have studied the properties of the ground state of the model at finite volume
and increasing values of the chemical potential. We have demonstrated how the increase of
chemical potential corresponds to the condensation of string excitations in the ground state. In fact,
increasing the chemical potential changes the flippability operator, as well as the number of string-
like excitations present in the ground state in discrete steps. In bosonic and fermionic theories,
increasing the chemical potential causes non-trivial particle numbers states to be the ground state.
Similarly, in this case, when we increase the chemical potential, we find the ground state to comprise
non-zero winding numbers. This causes the expectation value of the winding numbers to change in
discrete steps. We have also seen a correlation between the winding number sectors and the average
flippability of the plaquettes. With the finite dimensional Hilbert space at each link, this model is
also a good candidate for cold atom simulations without resorting to any further truncation [16].
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