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The worldvolume tempered Lefschetz thimble method (WV-TLTM) is an algorithm towards
solving the sign problem, where hybrid Monte Carlo updates are performed on a continuous
accumulation of flowed surfaces foliated by the anti-holomorphic gradient flow (the worldvolume
of integration surface). Sharing the advantage with the original tempered Lefschetz thimble
method (TLTM) that the sign problem is resolved without introducing the ergodicity problem, the
new algorithm is expected to significantly reduce the computational cost, because it eliminates
the need to compute the Jacobian of the flow in generating a configuration. We demonstrate the
effectiveness of the WV-TLTM with its successful application to the Stephanov model (a chiral
random matrix model), for which the complex Langevin method is known to suffer from a serious
wrong convergence problem. We also discuss the statistical analysis method for the WV-TLTM.
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1. Introduction

The sign problem is a notorious problem in applying Monte Carlo methods to systems with
complex actions, which include the finite density QCD as a typical example [1]. The tempered
Lefschetz thimble method (TLTM) [2] was proposed as a versatile solution to this problem. This
algorithm resolves the ergodicity problem inherent in Lefschetz thimble methods by tempering the
system with the antiholomorphic gradient flow, where a discrete set of replicas of configuration
space is introduced. In spite of its successful applications to various models [2—4], the original
TLTM has a drawback of high computational costs in generating a configuration, coming from the
calculation of the Jacobian of the flow and from the introduction of a large number of replicas to
ensure a sufficiently large acceptance rate in exchanging configurations between adjacent replicas.

The worldvolume tempered Lefschetz thimble method (WV-TLTM) [5] was introduced to over-
come this issue. This algorithm belongs to a class of worldvolume Hybrid Monte Carlo (WV-HMC),
where HMC updates are performed on a continuous set of replicas (the worldvolume of integration
surface). The WV-TLTM is expected to significantly reduce the computational costs, because one
no longer needs to compute the Jacobian of the flow in generating a configuration. In this talk, we
review the WV-TLTM and show its successful application [5] to the Stephanov model [6]. We also
discuss the statistical analysis method for this algorithm [7]. The basics and other applications of
the (WV-)TLTM are discussed in the contribution [8].

2. Worldvolume tempered Lefschetz thimble method

In the Lefschetz thimble method [9-12], we complexify the integration variable from x € RV
to z = x +iy € CN. We assume that the integrands in path integrals are entire functions over
CN . Then, Cauchy’s theorem ensures that the integration surface can be continuously deformed,
Yo =RN — %, (t: deformation parameter), without changing the values of the integrals:

fRN dx e S™M O (x) /Zz dz; eSO (zy)
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We deform the integration surface with the following anti-holomorphic gradient flow:
d *
% =108@)I" 20 =x. 2)

The crucial property of the flow is that the flowed surface approaches a union of Lefschetz thimbles:

% 5| e (3)

where the Lefschetz thimble - associated with a critical point z- [at which dS(zs) = 0] consists
of orbits flowing out of z,. Since the imaginary part of the action is constant on each
[ImS(z) =ImS(zs) (z € Jo)], the oscillatory behavior of the integrals will become mild at large
t. However, multiple J,’s are often relevant to the estimation of the path integral [13], and since
Jo’s are separated by regions where Re S(z) = oo, the distribution on X; gets multimodal as we
increase the flow time 7.
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Figure 1: The worldvolume R (colored region) consisting of X, foliated by the flow (2) .

The tempered Lefschetz thimble method (TLTM) [2] resolves this issue by tempering the
system with the flow time (where the parallel tempering [14-16] is employed). However, this
algorithm becomes expensive at large degrees of freedom because of the increasing number of
replicas so as to ensure a sufficiently large acceptance rate in the exchange process, as well as of the
calculation of the determinant of the Jacobian of the flow, J;(x) = dz,(x)/dx.

The worldvolume tempered Lefschetz thimble method (WV-TLTM) [5] resolves this drawback
of the original TLTM. The key observation in the new algorithm is that Eq. (1) can be expressed as
an integral over a region

T
R={u(x) eCV|xerN, re TN} =), “
=Ty

by averaging the numerator and the denominator in Eq. (1) over ¢ with an arbitrary weight e=" ():2

T _ _
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We call the region R the worldvolume, because this can be regarded as an orbit of integration surface
(see Fig. 1). To perform Monte Carlo calculations, we further rewrite Eq. (5) to the form

fR Dz e~ [W(t(2)+ReS(2)] (dt dZt/DZ) e~iImS(2) 0(2)
/72 Dz e~ W (t(2)+ReS(@)1(dt dz; /D7) e=i1mS(2)

(0) = , (6)

where Dz is the invariant volume element on R and #(z) is the flow time at z € R. If we use (¢, x)
as coordinates on R, then dz; and Dz can be written as

dz; = detJ; (x) dx, @)
Dz = a(z;(x)) | det J; (x)| dx dt, (8)

1] det J; (x)| needs to be computed in the exchange process to take into account the difference of the volume elements
between adjacent replicas (see, e.g., [4] for a detailed discussion).

2Although e~ can take an arbitrary form in principle, practically it is chosen such that it leads to a uniform
distribution in 7.
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where a(z;) is the magnitude of the normal component of z;(x) = [0S(z,;(x))]* to R. Then, by
introducing the potential V(z) and the reweighting factor A(z) as

V(z) =Re S(2) + W(1(2)), 9
_ dtdz; ~ilmS(z) _ 1 det J;(x) —iImS(z)
A@) = =e = @ o ¢ ’ (10

Eq. (6) can be written as a ratio of reweighted averages,

_ /R Dze™" @ f(2)
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The reweighted averages ( * )g on the subspace R are estimated by the Hybrid Monte Carlo with
the RATTLE discretization [17, 18] (for the use of the RATTLE in Lefschetz thimble methods, see
[11, 19] and [4]).

The computational cost of the WV-TLTM is reduced from that of the original TLTM for two
reasons. One is that the continuous migration of ¢ eliminates the need to worry about the acceptance
rate in the exchange process. The other is that, as the potential V(z) in the molecular dynamics
does not contain the Jacobian matrix J; (x) [see Eq. (9)], J; (x) needs not be calculated in generating
a configuration if we use an iterative method in linear inversion as in Ref. [20] (see Ref. [5] for
details).?

3. Application to the Stephanov model

To confirm the effectiveness of the WV-TLTM, we apply this algorithm to the Stephanov model
[6]. This model has been regarded as an important benchmark for algorithms towards solving the
sign problem, because it reproduces the qualitative behavior of finite density QCD in the limit of
large matrix size [6, 21, 22] and also it gives rise to a serious wrong convergence problem [23] with
the complex Langevin method [24, 25].

The partition function of the model is given by

m iW+pu

. 12
A TR (12)

— i
ZSteph = / d2W€ ntWiW qet

Here, W is an n X n complex matrix representing the gauge-field degrees of freedom with a flat
measure d°W = [] i,j (dRe W;; dIm W;;), and m and u correspond to the quark mass and the baryon
number chemical potential, respectively. We have set the temperature to zero, for which the sign
problem is most severe. We estimate the chiral condensate () and the baryon number density
(yTy) defined by

1 0
log ZSteph . ( 1 3)

— 1 0
W) = — ——log Zseph,  (YW'y) = 2 o

2n dm

Figure 2 shows the results for varying u with n = 10 (thus N = 2rn> = 200) and m = 0.004.
We also give for comparison the results obtained with the naive reweighting method and with the

3The phase of the Jacobian [Eq. (10)] still needs to be computed upon measurement.
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Figure 2: Estimates of the chiral condensate (upper panels) and the number density (lower panels) [5].

complex Langevin method (see [5] for detailed analysis). This size of matrix (n = 10) requires more
than about 70 replicas in the original TLTM, making the computation very costly. The sample size
is set to 4,000-17,000 for the WV-TLTM varying on g, and to 10,000 for the naive reweighting and
complex Langevin methods.

From the results with the naive reweighting, we see that there is a severe sign problem for this
parameter. We also see that the complex Langevin suffers from the wrong convergence (largely
deviated means from the exact values with small statistical errors; see [23] for a detailed analysis
of the Stephanov model with the complex Langevin method). In contrast, the WV-TLTM gives
results in good agreement with the exact values with controlled statistical errors, which proves the
effectiveness of the WV-TLTM.

4. Statistical analysis method for the WV-TLTM

In generating configurations, 77 must be set sufficiently large to reduce the sign problem and
Ty sufficiently small to recover ergodicity. In the estimation, however, we can use different values
of Ty, T1 (denoted by To, T1) by restricting the data to those belonging to the interval [To, Tl].
Note that in an ideal situation the estimate of a fixed observable does not depend on the choice of
To, Ty according to Cauchy’s theorem. We can in turn use this fact in actual calculations to test the
sufficiency of the sample size for the whole configuration space to be well explored. Furthermore,
when necessary, we may exclude two extreme regions: one is the small 7 region suffering from
phase fluctuations, and the other is the large ¢ region having possible large autocorrelations and
systematic errors due to the complicated geometry of X, at large ¢.

We now show that the restricted data set can be regarded as obtained from a Markov chain [7].
Let P(z’|z) be the transition matrix in the whole worldvolume with [7p, 71], and denote by R the
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Figure 3: The dependence of statistical quantities on the choice of R with varying Ty and fixed T;. (Top) Tp-
independence of the estimates [7]. (Bottom left) Scaling of %y, Eq. (18), and (Bottom right) Ty-independence
of the statistical errors, Eq. (20) [7]. The integrated autocorrelation times are saturated in the shaded region,
Tine = 1, where the scaling (18) breaks down.

restricted region with [T, T;]. Then, the probability P(z’|z) to obtain z’ € R from z € R can be
expressed as

P(|z) =P(z'|z)+/~ de(z'IW)P(WIZ)+/~ dwadwy P(Z'|w2) P(walwi)P(wilz) +-- -,
RC RC
(14)

where R¢ = R\R. The first term describes a direct transition in R, while the rest describes
processes that leave R once. The ergodicity of P ensures that of P, so that P has the correct
normalization as a transition matrix. Furthermore, if P satisfies the detailed balance with equilibrium
distribution peq(2), P also satisfies the detailed balance with the equilibrium distribution Peq(2) =
Peq(2)/ fﬁ dz peq(z). We thus can apply standard statistical analysis methods (such as the Jackknife)
to the restricted data set.

Figure 3 shows the estimates of the baryon number density with varying T and fixed 7} for the
Stephanov model of a matrix size n = 2 (see [7] for details). We observe a plateau for a wide range
of r = (T} — To)/(Ty — Tp), from which we confirm that the estimates do not depend on 7j. The
estimates are slightly deviated from the exact value at r < 0.2, but this can be understood by the
smallness of the sample size when Tj gets close to 7.

One may be worried about the increase in statistical errors due to the reduced size of restricted
data set. We can argue that this is not the case because the effect of the decrease in the sample size
is compensated by the decrease in autocorrelation. In fact, one can show that the effective sample
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size ngnf defined by

Nefff = Neonf/ Tint (15)

con

does not depend on the choice of To, Ti. Here, Neons is the original sample size, and Ty, is the
integrated autocorrelation time of a given operator O, defined from the autocorrelation functions

Cr = (00 = (0))(Or = (0))) as

T = 142 )" Ci/Co. (16)
k=1

We assume that the flow time ¢ € [T, T1] is uniformly distributed, which is equivalent to assuming
that the weight function W(z) is ideally chosen [see discussion below Eq. (5)]. We also assume that
the integrated autocorrelation time of ¢ is 1. Then, the probability for a configuration to appear in
[Ty, T1] is given by

_Ti-T
TTi-Ty

p 17)
Since a configuration appears in the subregion R with this probability, the integrated autocorrelation
time of the subsample will be reduced as

Tint = PTint- (18)

Since the sample size is reduced with the same ratio, Neont = pNeont, the effective sample size does
not change:

- - eff
Nconf/Tint = Nconf/Tint = Nconf’

19)

which means that the statistical error 6(Q) to the estimate of (O) is independent of the choice of
Ty, T1 because 6(O) is given by the formula

8(0) = a0/ N (05 = (0 - (0))?)). (20)

The scaling (18) and the Ty, T;-independence of Eq. (20) can actually be confirmed as in Fig. 3.

5. Summary and outlook

We have reported that the worldvolume tempered Lefschetz thimble method (WV-TLTM)
works quite well, by demonstrating its effectiveness with the application to the Stephanov model.
We also discussed the statistical analysis method for the WV-TLTM, which is expected to become
useful especially when performing large-scale computations.

We are now preparing large-scale simulations with the WV-TLTM for systems having the sign
problem, such as finite density QCD, the Hubbard model, and real-time QM/QFTs. In parallel with
research in this direction, we believe that it is still important to continue developing the algorithm
itself, for example, to find an efficient algorithm to determine the weight function W(z). A study
along these lines is in progress and will be reported elsewhere.
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