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Stout-smearing, gradient flow and cSW at one loop order
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The one-loop determination of the coefficient cSW of the Wilson quark action has been useful
to push the leading cut-off effects for on-shell quantities to O(α2a) and, in conjunction with
non-perturbative determinations of cSW, to O(a2), as long as no link-smearing is employed.
These days it is common practice to include some overall link-smearing into the definition of
the fermion action. Unfortunately, in this situation only the tree-level value c(0)SW = 1 is known,
and cut-off effects start at O(αa). We present some general techniques for calculating one loop
quantities in lattice perturbation theory which continue to be useful for smeared-link fermion
actions. Specifically, we discuss the application to the 1-loop improvement coefficient c(1)SW for
overall stout-smeared Wilson fermions.
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Stout-smearing, gradient flow and cSW at one loop order Maximilian Ammer

1. Introduction

In the original work Sheikholeslami and Wohlert [1] noted that the improvement coefficient cSW
has to be equal to one at tree level. Wohlert later calculated its value at one loop order using twisted
boundary conditions as a regulator [2]. More one-loop calculations of cSW have been performed by
Aoki and Kuramashi [3] focusing on different improved gauge actions and by Horsley et al. [4] for
SLiNC fermions (i.e. with stout-smearing in the Wilson part of the fermion action but not in the
clover term). Our aim is to calculate cSW to one loop order for the Wilson-clover action including
overall stout smearing. Furthermore because of the close relation of stout-smearing to the gradient
flow of the Wilson action we are able to directly extend our results to the case of flowed fields.

2. The perturbative determination of cSW

The Sheikholeslami-Wohlert-coefficient cSW of the O(a)-improved action:

SI = SWilson + cSW ·
∑
x

∑
µ<ν

ψ̄(x)
1
2
σµνFµν(x)ψ(x) (1)

has a perturbative expansion cSW = c(0)SW+g
2
0c(1)SW+O(g4

0) in powers of the bare coupling g2
0 = 2Nc/β.

It can be calculated via the quark-quark-gluon-vertex function

p

q

µ, a Λ
a
µ(p, q) =

∞∑
L=0

g2L+1
0 Λ

a(L)
µ (p, q). (2)

The number of loops L corresponds to the numbering of the expansion coefficients c(L)SW. At tree
level it is given by the lattice version of the qqg-vertex:

Λ
a(0)
µ (p, q) = (Va

1 )µ(p, q) (3)

= −g0Ta

(
iγµ + a

(
1
2
(pµ + qµ) −

i
2

c(0)SW

∑
ν

σµν(pν − qν)

)
+ O(a2)

)
(4)

Sandwiching its expansion in powers of a with on-shell spinors u and ū:

ū(q)Λa(0)
µ (p, q)u(p) = − g0Taū(q)

(
iγµ +

a
2

(
1 − cSW

(0)
)
(pµ + qµ)

)
u(p)

+ O(a2). (5)

gives the condition cSW
(0) = 1 to eliminate O(a) contributions1 .

1Technically cSW
(0) = r where r is the Wilson parameter.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
4
0
7

Stout-smearing, gradient flow and cSW at one loop order Maximilian Ammer

(a) (b) (c)

(d) (e) (f)

Figure 1: The six one-loop diagrams contributing to the vertex function in lattice perturbation theory.

At one-loop level the general form of the vertex function is

g3
0Λ

a(1)
µ = −g3

0Ta (
γµF1 + a/qγµF2 + aγµ/pF3 + a(pµ + qµ)G1 + a(pµ − qµ)H1

)
(6)

At O(a) F2 and F3 do not contribute on-shell and H1 vanishes due to symmetry arguments [3].
Sandwiching with on-shell spinors again gives

g3
0 ū(q)

( a
2

cSW
(1)(pµ + qµ)Ta + Λ

a(1)
µ (p, q)

)
u(p)

=g3
0 ū(q)

(
iγµF1 +

a
2
(pµ + qµ)(cSW

(1) − 2G1)Ta
)

u(p) + O(p2, q2) + O(a2), (7)

which results in the condition

cSW
(1) = 2G1. (8)

In Ref. [3] it is pointed out, that G1 can be easily extracted from the vertex function by

G1 = −
1
8

Tr
( (

∂

∂pµ
+

∂

∂qµ

)
Λ

a(1)
µ −

(
∂

∂pν
−

∂

∂qν

)
Λ

a(1)
µ γνγµ

) µ,ν
p,q→0

. (9)

The six diagrams that contribute at one loop level are shown in figure 1.

Λ
a
µ
(1) =

∑
i=a,..., f

Λ
a
µ
(1)(i) =

∑
i=a,..., f

π∫
−π

d4k
(2π)4

Iaµ
(i)
(p, q, k). (10)

All of them except the tadpole diagram (d) lead to IR-divergent integrals. To calculate them sepa-
rately their divergence needs to be analytically split off and the remaining constant part calculated

3
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numerically. One possibility is to use a small fictitious gluon mass µ (as was done in [3]). To this
end an analytically solvable integrand with the same divergent behaviour J is subtracted from the
original integrand I:

G(i)
1 =

π∫
−π

d4k
(2π)4

[
I(i)µ (k) − θ(π2 − k2)J(i)µ (k, 0)

]
+
Ω3

(2π)4

π∫
0

J(i)µ (k, µ2)k3dk (11)

The Heaviside-function makes J analytically solvable containing the non-zero gluon mass. As an
example, let us consider diagram (c):

Iaµ
(c) =

∑
b,c

∑
ν,ρ

Vbc
2νρ(p, q, q − p − k) G(k) G(p − q + k)Vbca

g3νρµ(p − q + k,−k, q − p), (12)

where Vab
2µν, Vabc

g3µνρ and G(k) are the lattice versions of the qqgg-vertex, the ggg-vertex and the gluon
propagator respectively. A possible analytically solvable integral can be obtained by expanding these
to O(a) which gives:

J(c) =
3
4

NccSW
(0) 2π2

(2π)4

π∫
0

k3

(k2 + µ2)2
dk (13)

=
3
4

NccSW
(0) 1

16π2

(
ln

(
π2

µ2

)
− 1

)
+ O(µ2) (14)

Denoting the logarithmic divergence by L = 1
16π2 ln

(
π2

µ2

)
and adding the finite result from the I − J

integral results in the following contribution from diagram (c):

2G(c)
1 =

9
2

L − 0.0813095 (15)

The following table shows the contributions from all diagrams and how their divergent parts add up
to zero. The far right column shows the values from [3] for comparison. It is worth pointing out

Diagram Divergent part Constant part Aoki, Kuramashi
(a) −L/3 0.00457196 0.004572(2)
(b) −9L/2 0.0830768 0.08311(3)
(c) 9L/2 −0.0813095 −0.08133(3)
(d) 0 0.297394537 0.29739454(1)
(e) L/6 −0.0175746 −0.017574(1)
(f) L/6 −0.0175746 −0.017574(1)

Sum 0 0.268588292 0.26858825(1)

that calculating the finite sum of all diagrams directly instead of diagram by diagram can lead to a
numerically more accurate result, as the discontinuity introduced through the Heaviside function in
(12) causes a slower convergence.
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3. Perturbative stout smearing and Wilson flow

Stout smearing with smearing parameter ρ of the link variable Uµ(x) is defined through

U(1)
µ (x) = eiρQµ (x)Uµ(x) (16)

with

Qµ(x) =
1
2i

(
Wµ(x) −

1
3

Tr[Wµ(x)]
)

(17)

Wµ(x) =
∑
ν,µ

(P†
µν(x) − Pµν(x)), (18)

where Pµν(x) is the plaquette in the µ, ν-plane at lattice position x. As Qµ(x) is anti-hermitian,
U(1)
µ (x) is automatically in SU(3) again and the smearing can be iterated leading to U(n)

µ (x) after n
smearing steps.

Wilson flow is the gradient flow of the Wilson action SW and defined through the following
differential equation:

∂tUµ(x, t) = −g2
0
{
∂x,µSW [U(x, t)]

}
Uµ(x, t) = iQµ(x, t)Uµ(x, t) (19)

Uµ(x, 0) = Uµ(x). (20)

Therefore it is easily seen, that the Wilson flow is generated by infinitesimal stout-smearings.
This means calculations done in the stout-smearing formalism with parameters ρ and n can be
transformed into the Wilson flow formalism with flow time t by performing the limit n → ∞,
ρ→ 0 with nρ = t = const. (t in lattice units, i.e. t/a2).

Our goal is to perform perturbative calculations of cSW as sketched in section 2 including stout
smearing and eventually Wilson flow. Therefore we need a perturbative expansion of the smearing.

3.1 Leading order

The un-smeared original link variable Uµ(x) has an expansion in terms of the gluon field Aµ(x):

Uµ(x) = 1 + ig0TaAa
µ(x) −

g2
0
2

1
2
{Ta,Tb}Aa

µ(x)A
b
µ(x) + O(g3

0) (21)

At leading order the smeared link variable U(1)
µ (x) has a similar expansion with a modified gluon

field Aa(1)
µ (x):

U(1)
µ (x) = 1 + ig0TaAa(1)

µ (x) + O(g2
0) (22)

Aa(1)
µ (x) = Aa

µ(x) + ρ(Q
a
µ(x))

LO (23)

with

(Qa
µ(x))

LO =

4∑
ν=1

(
Aa
ν (x) + Aa

µ(x + ν̂) − Aa
ν (x + µ̂) (24)

−Aa
ν (x − ν̂) + Aa

µ(x − ν̂) + Aa
ν (x + µ̂ − ν̂) − 2Aa

µ(x)
)
. (25)
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After a Fourier transform Aa(1)
µ (k) can be expressed as [5]:

Aa(1)
µ (k) =

∑
ν

(
f (k)δµν − ( f (k) − 1)

k̂µ k̂ν
k̂2

)
Aa
ν (k) (26)

with k̂µ = 2 sin( 1
2 kµ) and f (k) = 1 − ρk̂2. After n smearing steps the overall structure remains the

same except for the powers of n

Aa(n)
µ (k) =

∑
ν

(
f (k)nδµν − ( f (k)n − 1)

k̂µ k̂ν
k̂2

)
Aa
ν (k), (27)

which in turn makes it easy to perform the aforementioned limit to the Wilson flow formalism:

Aa
µ(k, t) =

∑
ν

(
e−tk̂

2
δµν − (e−tk̂

2
− 1)

k̂µ k̂ν
k̂2

)
Aa
ν (k, 0). (28)

3.2 Next-to-leading order

At next-to-leading order in addition to the quadratic term involving the already known modified
gluon field Aa(1)

µ (x) there is also an anti-symmetric part Aab(1)
µ (x):

U(1)
µ (x) = 1 + ig0TaAa(1)

µ (x)

−
g2

0
2

(
1
2
{Ta,Tb}Aa(1)

µ (x)Ab(1)
µ (x) +

1
2
[Ta,Tb]Aab(1)

µ (x)
)

+ O(g3
0) (29)

with

Aab(1)
µ (x) = 4ρ ·

[
1
2
(Qa

µ(x))
LO Ab

µ(x) + (Q
ab
µ (x))NLO

]
. (30)

Fourier transforming gives:

Aab(1)
µ (k1, k2) = 4ρ

∑
ν,ρ

gµνρ(k1, k2)Aa
ν (k1)Ab

ρ(k2), (31)

where

gµνρ(k1, k2) =δµν sin(1
2 (2k1ρ + k2ρ)) cos(1

2 k2µ)

−δµρ sin(1
2 (2k2ν + k1ν)) cos(1

2 k1µ)

−δνρ sin(1
2 (k1µ − k2µ)) cos( 1

2 (k1ν + k2ν)). (32)

After n iterations we get a sum over the A(m)
µ (x) from all previous smearing steps:

Aab(n)
µ (k1, k2) = 4ρ

n−1∑
m=0

[∑
ν,ρ

gµνρ(k1, k2)A
a(m)
ν (k1)A

b(m)
ρ (k2)

]
. (33)

6
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And finally in the Wilson flow limit we end up with the simple result of gµνρ contracted with the
differences of the flowed and the un-flowed fields:

Aab
µ (k1, k2, t) = 4

∑
ν,ρ

gµνρ(k1, k2)

×
∑
αβ

[
(e−tk̂

2
1 − 1)δνα − (e−tk̂

2
1 − 1)

k̂1ν k̂1α

k̂2
1

]
×

[
(e−tk̂

2
2 − 1)δρβ − (e−tk̂

2
2 − 1)

k̂2ρ k̂2β

k̂2
2

]
Aa
α(k1, 0)Ab

β(k2, 0) (34)

= 4
∑
ν,ρ

gµνρ(k1, k2)[Aa
ν (k1, t) − Aa

ν (k1, 0)][Ab
ρ(k2, t) − Ab

ρ(k2, 0)] (35)

4. Outlook

In order to calculate diagram (d), which involves the qqggg-vertex, the smearing relation at
next-to-next-to-leading order is also needed. There the expressions become rather lengthy. The next
step will then be to insert the smearing relations into the expanded action to obtain the Feynman
rules, which can only be partly compared to [4], as the ones coming from the clover term are not
included there.

Another question we would like to investigate concerns the structure of the smearing expansion.
Because the smeared link variable U(1)

µ (x) is again in SU(3) it is expected to have an expansion

U(1)
µ (x) = eig1T

a Ãa
µ (x) (36)

with a modified (renormalised) coupling g1. However this expansion does not coincide with the
expansion in g0 and finding a link between the two may help to simplify calculations.
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