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Localised Dirac eigenmodes and Goldstone’s theorem at finite temperature Matteo Giordano

1. Introduction

Ample evidence from lattice calculations shows that the lowest modes of the Euclidean Dirac
operator /𝐷 are localised in the high-temperature phase of QCD [1–4] and of other gauge theories [5–
13] (see [14] for a recent review). Localised modes are supported essentially only in a finite spatial
region whose size does not change as the system size grows. In contrast, delocalised modes extend
over the whole system and keep spreading out as the system size is increased. The distinction is
made quantitative by the scaling with the spatial volume 𝑉 of the inverse participation ratio (IPR),
which for a normalised eigenmode 𝜓𝑛 (𝑥) reads

IPR𝑛 =

∫
𝑇

𝑑d+1𝑥 ‖𝜓𝑛 (𝑥)‖4 , with
∫
𝑇

𝑑d+1𝑥 ‖𝜓𝑛 (𝑥)‖2 = 1 , (1)

where d is the spatial dimension of the system, ‖𝜓𝑛 (𝑥)‖2 =
∑

𝐴,𝑐 |𝜓𝑛 𝐴,𝑐 (𝑥) |2 is the local amplitude

squared of the mode summed over colour (𝑐) and Dirac (𝐴) indices, and
∫
𝑇
𝑑d+1𝑥 =

∫ 1
𝑇

0 𝑑𝑡
∫
𝑑d𝑥,

with𝑇 the temperature of the system. Assuming that 𝜓𝑛 (𝑥) is non-negligible only in a region of size
𝑂 (𝑉 𝛼), one can easily estimate that IPR𝑛 ∼ 𝑉−𝛼. For localised modes 𝛼 = 0, while for delocalised
modes 0 < 𝛼 ≤ 1.

Lattice studies show the same situation in a variety of gauge theories, with different gauge
groups and in different dimensions (also using different fermion discretisations): while delocalised
in the low-temperature, confined phase, low modes are localised in the high-temperature, deconfined
phase up to some critical point 𝜆𝑐 in the spectrum, above which they are again delocalised.
Localisation is a well-known phenomenon in condensed matter physics, commonly appearing in
disordered systems [15]. Technically, the Dirac operator can indeed be seen as (𝑖 times) the
Hamiltonian of a disordered system, with disorder provided by the fluctuations of the gauge fields.
It is then not surprising that the features of localisation observed in gauge theory are analogous to
those found in condensed matter systems: for example, at the “mobility edge” 𝜆𝑐, where localised
modes turn into delocalised modes, one finds a second-order phase transition along the spectrum
(“Anderson transition”) [16] with critical spectral statistics [17] and multifractal eigenmodes [18],
exactly as in condensed matter systems [19].

The physical consequences of localisation in disordered systems are clear: most notably,
localisation of electron eigenmodes leads to the transition from conductor to insulator in a metal
with a large amount of impurities [15]. The situation is instead not so clear for gauge theories,
where the physical meaning of the localisation of Dirac modes has proved to be more elusive. There
is, however, growing evidence of an intimate connection between localisation and deconfinement:
in a variety of systems with a genuine deconfinement transition, localisation of the low Dirac modes
appears in fact precisely at the critical point [7–13]. This is true even for the simplest model
displaying a deconfinement transition, namely 2+1 dimensional Z2 gauge theory [12]. Theoretical
arguments for this behaviour have also been discussed in the literature [20–22]. This connection
could help in better understanding confinement and the deconfinement transition.

Still, one would like to find a more direct physical interpretation for localisation in gauge
theories. This may seem a hopeless task, given that no physical meaning is attached to individual
points, or even regions, of the Dirac spectrum, with observables obtained only integrating over the
whole spectrum. A notable exception to this state of affairs is the chiral limit: in this case the point
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𝜆 = 0 is singled out as only near-zero modes are physically relevant, and the localisation properties
of these modes may have direct physical implications. In particular, one wonders how a finite
density of near-zero localised modes can affect (if at all) the usual picture of spontaneous chiral
symmetry breaking and generation of Goldstone excitations. While I know of no model where such
a scenario has been demonstrated, there are intriguing hints in (i) 2+1 flavour QCD towards the
chiral limit, and (ii) SU(3) gauge theory with 𝑁 𝑓 = 2 massless adjoint fermions.

(i) A peak of localised near-zero modes has been observed in overlap spectra computed in
HISQ backgrounds for near-physical light-quark mass right above the crossover temperature
𝑇𝑐 [23]. This peak persists also for lighter-than-physical light-quark masses [24, 25], but the
localisation properties are not known in that case. It is possible that this peak will survive
and the localised nature of the modes will not change in the chiral limit.

(ii) SU(3) gauge theory with 𝑁 𝑓 = 2 massless adjoint fermions displays an intermediate, chirally
broken but deconfined phase [26, 27], where a nonzero density of near-zero Dirac modes is
certainly present. As the theory is deconfined, one expects these modes to be localised.

2. Localised modes and Goldstone’s theorem at zero temperature

It is instructive to discuss first the case 𝑇 = 0. Consider a gauge theory with 𝑁 𝑓 degenerate
flavours of fundamental quarks of mass 𝑚. In such a theory, as a consequence of the Banks-
Casher relation [28] and of Goldstone’s theorem [29], a nonzero density of near-zero modes in the
chiral limit implies the spontaneous breaking of chiral symmetry down to SU(𝑁 𝑓 )𝑉 , and in turn
the presence of massless pseudoscalar Goldstone bosons in the particle spectrum. However, one
should say more precisely “delocalised near-zero modes”: in fact, it has been known for quite some
time [30, 31] that if the near-zero modes are localised then the Goldstone bosons disappear. To see
this in the case at hand, one uses the SU(𝑁 𝑓 )𝐴 (axial nonsinglet) Ward-Takahashi (WT) identity,

− 〈𝜕𝜇𝐴𝑎
𝜇 (𝑥)𝑃𝑏 (0)〉 + 2𝑚〈𝑃𝑎 (𝑥)𝑃𝑏 (0)〉 = 𝛿 (4) (𝑥)𝛿𝑎𝑏Σ , (2)

where 𝐴𝑎
𝜇 = �̄�𝛾𝜇𝛾5𝑡

𝑎𝜓, 𝑃𝑎
𝜇 = �̄�𝛾5𝑡

𝑎𝜓, and Σ = 1
𝑁 𝑓

〈�̄�𝜓〉, with 𝛾𝜇 and 𝛾5 the Euclidean Hermitian
gamma matrices and 𝑡𝑎 the generators of SU(𝑁 𝑓 ) in the fundamental representation normalised as
2 tr 𝑡𝑎𝑡𝑏 = 𝛿𝑎𝑏, and 〈. . .〉 is the Euclidean expectation value. In momentum space Eq. (2) becomes

𝑖𝑝𝜇G𝐴𝑃𝜇 (𝑝) + 2𝑚G𝑃𝑃 (𝑝) = Σ , (3)

where 𝛿𝑎𝑏G𝑃𝑃 (𝑝) =
∫
𝑑4𝑥 𝑒𝑖 𝑝 ·𝑥 〈𝑃𝑎 (𝑥)𝑃𝑏 (0)〉, and similarly for G𝐴𝑃𝜇 (𝑝). In the limit 𝑚 → 0,

one finds near 𝑝 = 0 that

G𝐴𝑃𝜇 (𝑝) →
𝑝→0

−
𝑖𝑝𝜇

𝑝2 [Σ − R] , R ≡ lim
𝑝→0

lim
𝑚→0

2𝑚G𝑃𝑃 (𝑝) , (4)

with Σ denoting from now on the chiral condensate in the chiral limit. If Σ − R ≠ 0, G𝐴𝑃𝜇 has a
pole at zero momentum implying the existence of massless bosons. If G𝑃𝑃 behaves reasonably as
a function of 𝑚 in the chiral limit then R = 0, and massless bosons are present if chiral symmetry
is spontaneously broken by a nonzero chiral condensate Σ. However, as I show below in Section 4,
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if there is a finite density of localised near-zero modes then G𝑃𝑃 generally diverges like 1/𝑚 in the
chiral limit. This divergence leads to a nonzero R proportional to the density of localised near-zero
modes, by cancelling the factor of 𝑚 in a way reminiscent of how UV anomalies are formed. In
particular, if a finite mobility edge is found in the chiral limit then the “anomalous remnant” R
cancels Σ exactly, removing the pole from G𝐴𝑃𝜇, and so the Goldstone bosons from the spectrum.

A non-vanishing anomalous remnant allows one to evade Goldstone’s theorem. In fact, the
anomalous remnant leads to chiral symmetry being explicitly broken in the chiral limit, with
the resulting modification of the usual WT identity showing that the axial-vector current is not
conserved. Current conservation is a fundamental hypothesis of the theorem, and since it does not
hold the theorem does not apply.

3. Localised modes and Goldstone’s theorem at finite temperature

The argument discussed above is not really relevant to realistic gauge theories (e.g., QCD and
QCD-like theories), where no localised near-zero modes have been observed at 𝑇 = 0. However,
it suggests a general strategy to study the physical effects of localisation in the chiral limit also
at finite temperature: relate the properties of the Euclidean Dirac spectrum with those of the
physical spectrum using the axial nonsinglet WT identity Eq. (2), that holds also at 𝑇 ≠ 0. In this
case, due to technical reasons related to the breaking of O(4) invariance in the Euclidean setting,
the physical spectrum is accessed more naturally by reconstructing the axial-vector-pseudoscalar
spectral function 𝜚𝐴𝑃 (see [32]) from the Euclidean correlators,

𝜚𝐴𝑃 (𝜔, ®𝑝) ≡
∫

𝑑4𝑥 𝑒𝑖 (𝜔𝑡− ®𝑝 · ®𝑥) 〈〈[ �̂�𝑎
0 (𝑡, ®𝑥), �̂�

𝑏 (0)]〉〉𝑇 , (5)

where 〈〈. . .〉〉𝑇 denotes the (real time) thermal expectation value, and �̂�𝑎
𝜇 and �̂�𝑏 are the Minkowskian

axial-vector and pseudoscalar operators. Using the WT identity Eq. (2) and the symmetry and ana-
lyticity properties of the correlation functions,1 one finds in the chiral limit at zero momentum [34]

lim
®𝑝→0

lim
𝑚→0

𝜚𝐴𝑃 (𝜔, ®𝑝) = −2𝜋[Σ − R]𝛿(𝜔) + (regular at 𝜔 = 0) , (6)

where Σ and R are now computed at finite temperature, i.e., compactifying the Euclidean time
direction to size 1/𝑇 , and in particular

R = lim
®𝑝→0

lim
𝑚→0

2𝑚G𝑃𝑃 (𝜔 = 0, ®𝑝) . (7)

The Dirac delta in Eq. (6) indicates the presence of massless quasi-particle excitations in the
spectrum, as long as its coefficient is nonzero. Similarly to the zero-temperature case, if G𝑃𝑃 is
sufficiently well-behaved in the chiral limit then R = 0, and spontaneous breaking of chiral symmetry
by a finite Σ leads to massless excitations in the spectrum. This is the finite-temperature version
of Goldstone’s theorem (see [35] and references therein). As shown below in Section 4, localised
near-zero modes can lead to a nonzero R, which can remove these Goldstone excitations from
the spectrum. Again, a finite anomalous remnant indicates explicit breaking of chiral symmetry
in the massless limit, so that the axial current is not conserved and Goldstone’s theorem at finite
temperature is evaded.

1It is also assumed that there is no transport peak in the pseudoscalar channel. This is expected on general grounds,
and supported by numerical lattice results (see [33]).
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4. Localised modes and the pseudoscalar correlator

I now show that a nonzero R is generally found in the presence of a finite density of localised
near-zero modes [34]. Since UV divergences play a very limited role, the argument can be carried
out safely (and more simply) in the continuum. One starts from the bare pseudoscalar correlator
〈𝑃𝑎

𝐵
(𝑥)𝑃𝑏

𝐵
(0)〉 at temperature 𝑇 in a finite spatial volume 𝑉 and for finite (bare) mass 𝑚𝐵,2 written

in terms of a double sum over Dirac modes,

〈𝑃𝑎
𝐵 (𝑥)𝑃𝑏

𝐵 (0)〉 = −𝛿𝑎𝑏

2

〈∑︁
𝑛,𝑛′

𝑂
𝛾5
𝑛′𝑛 (𝑥)𝑂

𝛾5
𝑛𝑛′ (0)

(𝑖𝜆𝑛 + 𝑚𝐵) (𝑖𝜆𝑛′ + 𝑚𝐵)

〉
≡ −𝛿𝑎𝑏Π𝐵 (𝑥) . (8)

Here /𝐷𝜓𝑛 = 𝑖𝜆𝑛𝜓𝑛, with 𝜓𝑛 obeying antiperiodic (resp. periodic) temporal (resp. spatial) boundary
conditions and normalised to 1, 𝑂Γ

𝑛𝑛′ (𝑥) ≡ ∑
𝑐,𝐴,𝐵 𝜓𝑛 𝐴,𝑐 (𝑥)∗Γ𝐴𝐵𝜓𝑛′ 𝐵,𝑐 (𝑥), and a UV cutoff on

𝜆𝑛,𝑛′ is understood to be in place. After renormalisation of the mass, 𝑚𝐵 = 𝑍𝑚𝑚, and of Π𝐵,
Π(𝑥) = 𝑍2

𝑚 [Π𝐵 (𝑥) −CT(𝑥)], including the removal of the divergent contact terms CT, one can take
the thermodynamic and chiral limit (in this order) to find the following expression for the coefficient
of the 1/𝑚 divergence of Π(𝑥),

lim
𝑚→0

2𝑚Π(𝑥) = 2 lim
𝑚→0

∫ 𝜇

𝑚

0
𝑑𝑧

(
𝐶1(𝑚𝑧;𝑚; 𝑥)

𝑧2 + 1
+ (1 − 𝑧2)𝐶𝛾5 (𝑚𝑧;𝑚; 𝑥)

(𝑧2 + 1)2

)
, (9)

𝐶Γ (𝜆;𝑚; 𝑥) ≡
〈∑′

𝑛𝛿(𝜆 − 𝜆𝑅
𝑛 )𝑂Γ

𝑛𝑛 (𝑥)𝑂Γ
𝑛𝑛 (0)

〉
, (10)

where 𝜆𝑅
𝑛 = 𝑍−1

𝑚 𝜆𝑛,
∑′

𝑛 =
∑

𝜆𝑅
𝑛 ≠0, and 𝜇 is a fixed but arbitrary mass scale, which will eventually

play no role. Exact zero modes have been dropped since they are negligible in the thermodynamic
limit. Modes outside of a neighbourhood of 𝜆 = 0 also become negligible in the chiral limit, leading
in particular to the absence of divergent contact terms.

The quantity in Eq. (9) can be nonvanishing only if 𝐶Γ survives the thermodynamic limit,
and here the localisation properties of the eigenmodes play a crucial role. In fact, using Schwarz
inequality and translation invariance one can bound the eigenmode correlators entering 𝐶Γ as
follows,

|〈𝑂Γ
𝑛𝑛 (𝑥)𝑂Γ

𝑛𝑛 (0)〉| ≤ 〈‖𝜓𝑛 (𝑥)‖2‖𝜓𝑛 (0)‖2〉 ≤ 1
2
〈‖𝜓𝑛 (𝑥)‖4 + ‖𝜓𝑛 (0)‖4〉

=
𝑇

𝑉

〈∫
𝑇

𝑑4𝑥 ‖𝜓𝑛 (𝑥)‖4
〉
=
𝑇

𝑉
〈IPR𝑛〉 .

(11)

Making the dependence of 𝐶Γ on 𝑉 explicit by writing 𝐶Γ
𝑉

, one then finds

|𝐶Γ
𝑉 (𝜆;𝑚; 𝑥) | ≤ 𝑇

𝑉

〈∑′
𝑛𝛿(𝜆 − 𝜆𝑅

𝑛 ) IPR𝑛

〉
= 𝜌𝑉 (𝜆) IPR(𝜆) , (12)

where 𝜌𝑉 (𝜆) ≡ 𝑇
𝑉
〈∑′

𝑛 𝛿(𝜆 − 𝜆𝑅
𝑛 )〉 and IPR(𝜆) ≡ 𝑇

𝑉
〈∑′

𝑛 𝛿(𝜆 − 𝜆𝑅
𝑛 ) IPR𝑛〉/𝜌𝑉 (𝜆) are the spectral

density at finite𝑉 and the average IPR computed locally in the spectrum, respectively. If modes near
𝜆 are supported in a region of size 𝑂 (𝑉 𝛼(𝜆) ), one has IPR(𝜆) ∼ 𝑉−𝛼(𝜆) , and so 𝐶Γ

𝑉
(𝜆;𝑚; 𝑥) → 0

2The zero-temperature case is obtained by setting the calculation in a finite four-volume 𝑉4, replacing 𝑇/𝑉 → 1/𝑉4
in the formulas below, and eventually taking the limit 𝑉4 → ∞.
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in the thermodynamic limit unless 𝛼(𝜆) = 0, i.e., unless modes near 𝜆 are localised. In the
thermodynamic limit, 𝐶Γ (𝜆;𝑚; 𝑥) = lim𝑉→∞𝐶Γ

𝑉
(𝜆;𝑚; 𝑥) is then nonzero only in spectral regions

where localised modes are present.
The anomalous remnant R is now obtained by integrating Eq. (9) over Euclidean spacetime.

Assuming that localised modes are present in the interval [0, 𝜆𝑐 (𝑚)], one obtains

R = −
∫
𝑇

𝑑4𝑥 lim
𝑚→0

2𝑚Π(𝑥) = −𝜋𝜉 𝜌loc(0) , (13)

where 𝜌loc(0) is the density of localised near-zero modes,

𝜌loc(0) ≡ lim
𝑚→0

lim
𝜆→0

lim
𝑉→∞

𝑇

𝑉

∑︁
𝑛∈loc

〈𝛿(𝜆 − 𝜆𝑅
𝑛 )〉 , (14)

and
𝜉 ≡ lim

𝑚→0

2
𝜋

arctan
𝜆𝑐 (𝑚)
𝑚

(15)

is a function of the renormalisation-group invariant ratio 𝜆𝑐 (𝑚)
𝑚

in the chiral limit. In obtaining
Eq. (13) one exploits the localised nature of the modes to exchange the order of integration, chiral
limit, and thermodynamic limit, as well as the orthonormality of Dirac modes. As anticipated, R
is proportional to the density of localised near-zero modes. The quantity 𝜉 ∈ [0, 1] depends on
how the mobility edge scales in the chiral limit: 𝜉 = 0 if it vanishes faster than 𝑚, 0 < 𝜉 < 1 if it
vanishes like 𝑚, and 𝜉 = 1 if it vanishes more slowly than 𝑚, including not vanishing at all. The
arbitrary scale 𝜇 does not appear in the final expression, as expected.

5. Localised modes and Goldstone excitations

Using Eq. (13) and the Banks-Casher relation Σ = −𝜋𝜌(0) [28], where 𝜌(0) is the density of
near-zero modes (localised or otherwise) in the chiral limit obtained from 𝜌𝑉 (𝜆) taking limits as in
Eq. (14), one finds for the singular part of the spectral function in the chiral limit [34]

lim
®𝑝→0

lim
𝑚→0

𝜚𝐴𝑃 (𝜔, ®𝑝) |singular = −2𝜋[Σ − R]𝛿(𝜔) = 2𝜋2𝜌(0)
(
1 − 𝜉

𝜌loc(0)
𝜌(0)

)
𝛿(𝜔) . (16)

One can now determine the fate of the Goldstone excitations. Since localised and delocalised modes
usually do not coexist, one has 𝜌loc (0)

𝜌(0) = 1 or 0 depending on whether near-zero modes are localised
or delocalised. There are four possible scenarios.

0. Near-zero modes are delocalised: Goldstone excitations are present as long as 𝜌(0) ≠ 0. This
is the standard scenario predicted by Goldstone’s theorem.

1. Near-zero modes are localised and 𝜉 = 0: Goldstone excitations are present as long as
𝜌(0) ≠ 0, i.e., localisation of near-zero modes has no effect on the Goldstone excitations, and
the same standard scenario is found.

2. Near-zero modes are localised and 0 < 𝜉 < 1: Goldstone excitations are present if 𝜌(0) =
𝜌loc(0) ≠ 0, although the coefficient of the Dirac delta is reduced compared to scenarios 0 and
1. This is qualitatively the same as the standard scenario, but differs from it quantitatively.

3. Near-zero modes are localised and 𝜉 = 1: Goldstone excitations are absent even if 𝜌(0) =

𝜌loc(0) ≠ 0.
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6. Conclusions

I have shown how the pseudoscalar-pseudoscalar correlator generally develops a 1/𝑚 diver-
gence in the chiral limit in the presence of a finite density of localised near-zero modes. This
divergence leads to a finite anomalous remnant that modifies the usual form of the axial nonsinglet
Ward-Takahashi identity in the chiral limit, signaling that chiral symmetry is broken explicitly even
in this limit. This indicates non-conservation of the axial-vector current, and so the inapplicability
of Goldstone’s theorem, both at zero and at finite temperature. Depending on the detailed behaviour
of the mobility edge 𝜆𝑐 as a function of𝑚, one can either recover the standard scenario with massless
excitations, possibly up to a change in the coefficient of the singular term in the spectral function,
or have Goldstone excitations removed from the spectrum.

So far, the presence of localised near-zero modes in the chiral limit has not been demonstrated
explicitly in any model, although there are indications that it could be a feature of the chiral limit
of QCD and of SU(3) gauge theory with 𝑁 𝑓 = 2 flavours of adjoint fermions. It would certainly be
interesting to find a model with this property, especially if it realised a non-standard scenario for
Goldstone modes (i.e., cases 2 and 3 above). It would also be interesting to work out the possible
signatures in the finite-mass theory originating from the realisation of a non-standard scenario in
the chiral limit.
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