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Self-dual U(1) lattice field theory with electric and magnetic matter

1. Introduction

U(1) gauge theories are essential in our everyday experience and, along with gravity, influence our
world in a more direct way than the other two fundamental forces. Moreover, emergent U(1) gauge
theories are omnipresent in condensed matter systems. Yet U(1) gauge theories in four spacetime
dimensions are thought not to be genuine quantum field theories. They are not asymptotically free,
and hence their definition requires embedding them in another, UV complete theory, such as a
non-abelian gauge theory or a lattice gauge theory.

In four spacetime dimensions in a continuum description, free U(1) gauge theories have two
global symmetries, because 9J,,, = 0" Jy,y =0, where Jyy < Fyyy, Juy o< €4vpeFPC, which we will
refer to as electric and magnetic symmetries'. Such symmetries, resulting in two-antisymmetric-
index currents are referred to as 1-form symmetries2 [1]. These conservation laws can be thought
of as the Gauss law for electric and magnetic field: the electric and magnetic flux are independent
of the shape of the Gauss surface, and only depend on the charge within?.

It is a common lore that UV completions of a U(1) gauge theory always requires monopoles
[2]. Indeed both embeddings, the one via non-abelian gauge theory, as well as Wilson lattice gauge
theory result in a system which has dynamical monopoles. But that means that there is no magnetic
symmetry in the underlying system. However, some condensed matter systems are believed to be
effectively described by a U(1) gauge theory where only monopoles of non-minimal charge are
dynamical, and some discrete part of the magnetic symmetry survives. This leads to the question
whether gauge theories can be formulated where monopole matter is absent, or where monopoles
are treated on equal footing with electric matter (e.g., they can be endowed with spin, bare mass,
or short range interactions). Indeed, it is well known that the continuum formulation of U(1) gauge
theory enjoys an electric-magnetic duality, and at least in principle electric and magnetic matter can
be treated on equal footing (see, e.g., [3]). In fact U(1) lattice gauge theories were often used where
monopole particles were identified in lattice configurations, and suppressed or given an action to
[4, 5, 6, 7], but such procedures treat magnetic and electric matter content in a very different way,
and at the very least obscure the formal equivalence between electric and magnetic matter.

On the other hand, Villain’s lattice action [8] is known to have better self-dual features, and
the EM self-duality was initially discovered, not in the continuum but in specific lattice systems
[9, 10, 11, 12]. Yet it was noted only recently in [13, 14, 15], that a certain modification of Villain’s
action* can be used to construct models where magnetic and electric matter can be coupled on
equal footing, and do not appear as artifacts of a theory. The gist of it is that such a formulation
features both electric and magnetic gauge fields in the lattice action, which allows one to endow
both electric and magnetic matter with spin, internal quantum numbers and arbitrary gauge charge,
or to eliminate them all together, by setting the corresponding matter action to zero. This raises

IFor free U(1) gauge theory, both of these symmetries are U(1) symmetries. When matter fields are added, these
symmetries may be reduced.

2The electric symmetry Juv = Fyy is always a 1-form symmetry in any dimension, but the magnetic symmetry is a
d — 3-form symmetry, where d is the number of space-time dimensions.

3Note the distinction between these conservation laws and the usual Nother charges. The ordinary, or O-form
symmetries, have charges which are integrals over space, i.e., they are codimension 1 operators. In contrast, a p-form
conserved charge is a codimension p + 1 operator.

4A similar construction was recently used in lattice models of fractons [16].
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Figure 1: The phase diagram of U(1) lattice gauge theory with electric and magnetic matter.

the question of whether such U(1) lattice gauge theories can be considered as genuine quantum
field theories. Indeed, based on symmetries alone, such theories can have more symmetries than
non-abelian gauge theories, whose global symmetry group is typically limited to the electric Zy
center symmetry and electric flavor symmetry’. In contrast, the modified Villain gauge theories
can be endowed with Zp magnetic center symmetries (by setting all magnetic charges to multiples
of the integer Q) and/or magnetic flavor symmetries, by coupling multiple flavors. This raises the
question whether any of these theories have a continuum limit. Moreover, if the actions of the
electric and magnetic matter are identical, and if the gauge coupling is dialed to a particular value,
the lattice model becomes exactly self-dual®.

In this contribution we explore duality and self-duality in the simplest of such theories: a
U(1) gauge theory with a single scalar electric matter field and a single scalar magnetic matter
field. For a generic electric coupling e = 1/ \/B , the system has no global symmetry. However,
duality maps the lattice action to itself, with dual coupling f — E = 1/4x?B. If B is chosen to
be B = B* = 1/2m, the self-duality transformation is a symmetry of the theory’. At this point one
may study the system as a function of the remaining matter coupling J (which for full self-duality
has to be the same for electric and magnetic matter).

We here present our first numerical results from a Monte Carlo simulation of this system at the
self-dual coupling B* with varying matter coupling J (see below for the definition and the explicit
formulation of the model). For J = 0 matter decouples completely (think of it as the limit m?> — oo,
where m is the bare mass) and we just have a Coulomb (i.e., photon) phase. As J is increased,
electric and magnetic matter want to condense, but there is a tension, because the condensation of
electric (magnetic) matter, confines the magnetic (electric) matter preventing it from condensing.
So we expect that, for some J = J; we enter a phase of coexistence between electric and magnetic
condensation, and hence a spontaneous breaking of the self-dual symmetry ensues. If J is increased
even further, we enter a deeply Higgsed lattice regime, which can be solved exactly for our model,
and is trivially gapped, i.e., electric condensation (i.e., a Higgs phase) and magnetic condensation
(i.e., a confinement phase) exhibit the Fradkin-Shenker continuity [19]. So we expect that at some
J = J the self-dual symmetry gets restored again. We summarize the phase diagram in Fig. 1.

50One may gauge a subgroup of the discrete center symmetry and thereby obtain a bonus magnetic center symmetry,
seee.g. [17].

%More precisely the self-duality generator actually does not exponentiate to unity, but to charge-conjugation + lattice
translation by one unit in all directions. In a continuum limit, one can can think of the self-dual symmetry generator S
as forming a Z, group, where S> = C is the charge conjugation operator.

7Note that, unlike Kramers-Wannier duality of the 2d Ising system, the self-duality of the model we discuss is a
genuine symmetry at the self-dual point. The point is that when an Ising system is dualized, the resulting dual theory is
not exactly the original theory, but an original theory coupled to a topological quantum field theory — roughly where its
global symmetry group is gauged. For more on why Kramers-Wannier duality is not a genuine duality, see [18].
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Using suitable order parameters for self-duality we find that self-duality is indeed broken in
some range of J and we determine and analyze the corresponding (critical) endpoints. Varying the
gauge field coupling around the self-dual value * we find that the order parameters exhibit a first
order jump at B*. Our results constitute one of the first non-perturbative instances of spontaneous
breaking of self-duality®, thus adding another aspect to the rich phenomenology of duality relations
in quantum field theory.

2. Definition of self-dual U(1) lattice gauge theory with electric and magnetic matter

The gauge field action is based on the Villain formulation [8] and is given by

. 1
SelA n] = EZ Y (Few)®, 2.1
X u<v

where the sum runs over all plaquettes of our lattice. The field strength tensor is defined as
Fepv = (dA®)x yv +27ny yy = (dA° + 27 n), 1y, with the exterior derivative defined as (dA€), v =
A o —AS —A°
x+[,v X,V x+V,U
our 4-d lattice, while the Villain variables n, y € 7 live on the plaquettes. The lattice we consider

+Ag ;- The electric gauge fields A} (x) € [—, ] are assigned to the links of

has size N2 x N, and we use periodic boundary conditions for all directions.

We will couple electric matter using the link variables defined as Uy, (x) = e, Clearly the
link variables are invariant under shifts of A (x) by multiples of 27k, (x) with ky (x) € Z, while
the exterior derivatives (dA¢),, pv are not. The Villain variables n, ,, may be considered as gauge
fields for the shift symmetry and summing them over all integers renders the field strength F ;;
invariant under the shift symmetry.

Note, however, that we may impose an additional constraint on the Villain variables [13, 14],
since the contribution from the shift alters the exterior derivative (dA°), ;v by the term (dk)y, 1
and this term obeys d(dk). v = 0, due to the nilpotency d?> = 0 of the exterior derivative (for a brief
summary of the necessary tools and conventions for lattice differential forms see the appendices of
[13, 14], as well as [21, 22]). Thus we may impose the closedness constraint

(d”)x,uvp =0 V(x,uvp), (d”)x,uvp =Nytfvp —Mavp =Myt up T pup + Ry p uv —Nx v, (2.2)

which implements vanishing exterior derivative (dn)y vp of the Villain variables on all cubes
(x,uvp) of the lattice. The physical role of the closedness constraint is to remove magnetic
monopoles from our lattice formulation. The closedness constraint can be formulated as a product
of Kronecker deltas (our notation here is 8 (n) = ,0),

m
dAT uvp

[T T1 8(@mump) =TT TT [ =502 et 2.3)

X pU<v<p X u<v<p

where in the second step we have written the Kronecker deltas with an integral representation which
Yuvp € [=7, 7] assigned to the cubes of the lattice.
We may now combine the gauge field action and the constraints into the joint Boltzmann factor

introduces the magnetic gauge fields A

Bﬁ [Ae’AM] = Z e—ﬁSg[AE.,n] ei2x2p<v<pAfuvp(d")X~#VP , (24)
{n}

8See [20] for a recent study of self-duality breaking in a 3d model of a discrete gauge theory.
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where S is the (inverse) gauge coupling B = 1/¢?, with e the electric charge. By Y.(») We denote
the sum over all configurations of the Villain variables,

Y =11IT1 ¥ . /DAK HH/ /DA’" = M<v<p/7r thvp . (2.5)

{n} X U<Vn,y€Z

where we have also introduced the measures over the electric and the magnetic gauge fields. Using
these we may write the partition function as Z(8) = [D[A¢] [D[A™] Bg[A¢,A™], which constitutes a
formulation of 4-d U(1) lattice gauge theory that is free of monopoles.

Using Poisson resummation and switching to the dual lattice, one may show [13, 14] that our
lattice discretization of U(1) gauge fields is also self-dual, i.e., the partition sum obeys (V = NfN,)

v _
Z(B) = <1) Z2(B)  wih B = 475123' 2.6)

2np
The self-duality relation connects the weak and strong coupling regimes of the theory.

From a physical point of view the key step to self-duality is the removal of lattice monopoles
by augmenting the Villain action with the closedness constraint (2.2). There is an interesting option
to generalize the pure lattice gauge theory considered so far in a self-dual way by abandoning the
closedness constraint and explicitly coupling magnetic matter and its dual counterpart, i.e., electric
matter. For the electric matter fields we here use U(1)-valued spins ¢¢ attached to the sites which
we parameterize as ¢¢ = e'% with ¢¢ € [—m,7]. We remark that it is straightforward to replace
the U(1)-valued matter by a general charged bosonic or fermionic field. The partition sum for the
electric matter in a background configuration of the electric gauge field Aj (x) is given by

/D o eSel974°] /D H/ﬂd(px, 27

with the action for electric matter defined as

1
Se[9¢,A°] = EZ[ - ‘Aw¢x+u+cc] = Y cos (@, q — @y +AT,) - (2.8)
X,[J, X,H

The partition sum contains a new parameter, the electric matter coupling J, € R.

In a similar way we now define the partition sum for magnetically charged matter in the back-
vuvp 1s attached to the 3-cubes of
the lattice. It is natural to switch to the dual lattice and by Aj’gu we denote the magnetic gauge fields

ground of the magnetic gauge field. The magnetic gauge field A

now labelled with the coordinates (%, ) for the links of the dual lattice (see again the appendices
of [13, 14] for our conventions). The magnetically charged scalar ﬁeld (5’” € U(1) is assigned to
the sites of the dual lattice and we parameterize it in the form d)m =e/%", where ¢!" € [, 7t]. The
corresponding partition function is identical to the partition function (2.7) for the electric matter
but now is defined entirely on the dual lattice,

m ”7 7r d
Z[Am, /D e InSu 9,4 /D & H/ 2‘an 7 (2.9)
Vs

IS 1 _ o~
Su[¢m A" = EZ[ G oAt W+cc} = Y cos (@i, — QI +AL,) . (2.10)
b Fn
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and again we introduced a coupling parameter, here denoted as J,;,. The overall partition sum is
then obtained as Z(B,J.,Jn) = [D[A¢] [D]A™] Bg[A¢,A™] Z[A¢, J.] Z[X’",Jm] , and is a function of
the gauge coupling f3, as well as the electric and the magnetic matter couplings J, and J,,.

A duality relation also holds for the full theory with electric and magnetic matter [13, 14],

~ o~ - 1 -

1\ . _ _
Z(B,Jo,dw) = (2%/3) Z(B,JesJw) with B = prer R Jo=Jn, Jn=1J.. (211

The key goal of this study is to explore this duality relation using numerical Monte Carlo simula-
tions. Suitable observables for such a study may be obtained by derivatives of InZ with respect to
the couplings. In particular we consider the action densities,

1 0 ) e
(FXg goay = —Wﬁan(B,Je,Jm) with F>= Y (Fouy)?/6V = S,[A%n]/3V , (2.12)
X,U<v
1 0 )
<S6>B,Je.,lm = TR nZ(B,J,J) with s,=8,/4V, (2.13)
- 1 0 o~
<sm>BJeJm = Wﬁ In Z(ﬁ,-]ea«]m) with Sm = Sm/4V . (214)

Before we come to the discussion of our results we need to briefly address the actual simu-
lation. Obviously the Boltzmann factor Bg[A¢,A™] in Eq. (2.4) is complex and the corresponding
complex action problem prevents a direct application of Monte Carlo techniques. In order to over-
come this problem one may switch to a dual representation in terms of worldlines and worldsheets
where the weight factors are real and positive. We do not discuss the derivation of this representa-
tion or the corresponding Monte Carlo techniques here, but refer to [13, 14, 15, 23] for details.

3. Numerical results for simulations of the self-dual theory

In this contribution we report about our first results for simulations at the self dual-point, i.e., we set
B= E =B*=1/2n and J, = J,, = J, where J is the only remaining variable coupling. We evaluate
our observables following (2.12) — (2.14) and use d/df3 = (85/8[3) 8/85 = —1/4n?B? 8/85 for
the derivative of the rhs. of the duality relation (2.11) with respect to 3. After a few lines of algebra
this leads to the self-duality relation for the expectation value of the gauge field action density,

(Fygo; =7 VJ. (3.1

In other words, self-duality implies that (F?) g+ is constant for all J. In a similar way one may
apply derivatives with respect to the matter couplings J,,J,, on the two sides of (2.11) and then set
J. = J,, = J afterwards to come up with a self-duality relation for the matter field action densities,

(sg>ﬁ*’1 = (&Vm)ﬁw vJ. (3.2)
In order to explore spontaneous breaking of self-duality we thus may define the order parameters
My = |F* — x|  and M, = [s. — s, . (3.3)

If the vacuum expectation values of these order parameters are non-vanishing this signals that self-
duality is broken spontaneously. We remark that absolute values were introduced in (3.3), such that
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Figure 2: Top row: Vacuum expectation value (left) and Binder cumulant (right) for the gauge field order
parameter M,. We show the results at B = 8* = 1/2x as a function of J and compare the results for different
volumes. Bottom left: The Binder cumulant for the gauge field order parameter. For different volumes we
show the results at B = B* as a function of the rescaled coupling jL'/Y with j =J —J, and v = 0.5. Bottom
right: The gauge field order parameter as a function of the rescaled gauge coupling In(27f3), for values
across the self-dual value B* = 1/2x. The matter field coupling here is set to J = 0.6.

we can study the effects of spontaneous symmetry breaking also on a finite lattice. When studying
the order parameters with explicit breaking, i.e., for f # f*, we may omit the absolute values. In
addition we also consider the corresponding Binder cumulants to analyze potential critical behavior.
The top row of Fig. 2 shows the results for our gauge field observables at the critical coupling
B* =1/2m. The lhs. plot is the order parameter and the rhs. the corresponding Binder cumulant,
both plotted as a function of the matter coupling J. In the interval between J ~ 0.52 and J ~
0.7 the order parameter develops a non-vanishing expectation value, while outside this interval it
approaches 0 in the infinite volume limit. The corresponding Binder cumulant on the rhs. indicates
that at J; ~ 0.52 we find a first order transition (the Binder cumulant develops a minimum at J;),
while the transition at J, ~ 0.7 turns out to be second order (Binder cumulants for different volumes
intersect at the critical point). The matter field observables show essentially the same behaviour.
To locate the first order point near J; ~ 0.52 one may zoom into the region around J; and
inspect the Binder cumulants for different volumes there. One observes, that for both the gauge and
the matter cumulants a minimum forms, which for the largest three lattices and both observables is
located at the same point. We conclude that the system has a first order endpoint at J; = 0.518(2).
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For analyzing the second order transition at J, we use the finite size scaling formula U ~
A+ B(J—) L'V for the Binder cumulant, where A and B are constants, V is the critical exponent
for the correlation length and we set Ny = N; = L. The scaling formula implies that when plotted
as a function of the rescaled coupling jL'/V with j = J — J,, the values of the Binder cumulant
for different system sizes L should collapse onto a single curve (for correctly chosen values of v
and J>). In the bottom left plot of Fig. 2 we show the result for the gauge field Binder cumulant
for a critical exponent v = (0.5. We zoom into the region near the second order transition point at
J = 0 and for J, use the value where we find optimal collapse of the data, which is J, = 0.700(1).
Our first assessment of the transition at J, thus suggests that we have a second order transition at
J» =0.700(1) with critical exponent v = 0.5, i.e., the mean field value. We are currently analyzing
the scaling behavior of susceptibilities near J, in order to determine the critical exponent . A first
assessment indicates that also this exponent is compatible with the mean field value y = 1.

We finally study our two order parameters as a function of the gauge coupling parameter 3 in
the vicinity of the self-dual point $* = 1/2x. Values different from 3* give rise to explicit breaking
of self-duality and thus setting 8 = B* amounts to introducing a symmetry breaking term, similar
to the introduction of an external magnetic field in a ferromagnet. To make this role more explicit
we study the order parameters as a function of In(2zf3), which vanishes for § = * = 1/2x and is
an odd function when interchanging 8 and E . We remark that for the gauge field order parameter
we study the combination 8 (F?)g ; — 1/2 which vanishes at the self-dual point f = * and is an
odd function of In(27f3). The bottom right plot in Fig. 2 nicely illustrates the behavior expected for
an order parameter when the symmetry breaking coupling changes sign. We observe a finite jump
when In(27f3) crosses 0, and curves corresponding to different lattice sizes quickly coincide with
increasing volume. Thus we conclude that the line at § = B* between J; and J; is a first order line.

4. Discussion

In the project presented here we set out to study duality and self-duality for suitably discretized
(Villain formulation) U(1) lattice gauge fields coupled to electric and magnetic matter. The system
has a sufficiently rich duality structure, such that one may study self-duality as a function of the
matter coupling J. Of particular interest is the question whether self-duality may become broken
spontaneously and what the corresponding phase diagram looks like.

Our analysis shows that for the self-dual gauge coupling B* indeed self-duality becomes bro-
ken for an interval [J;,J>] of matter couplings. Using suitable order parameters and their Binder
cumulants we conclude that we have a first order endpoint at J; = 0.518(2) and a second order point
at J, = 0.700(1) with critical exponents that are compatible with the mean field values. Changing
the gauge coupling 8 away from the self-dual coupling * is equivalent to introducing an explicit
self-duality breaking term. Thus, when driving the gauge coupling through * for some coupling
J € [J1,J2] one expects a first order jump, which indeed is what we observe.

The preliminary study presented here sheds light on the rich structure of duality and self-
duality relations and non-perturbatively explores their role for the phenomenology of quantum
field theories. We remark that considerably more complex questions could be addressed, such as
explicit breaking of self-duality by setting J, # J,,, or adding additional self-dual terms that could
alter the nature of the endpoints at J; and J>. We are currently exploring some of these options.
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